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Lee-wave breaking over obstacles in stratified flow
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Experimental results are presented on the lee-wave breaking process which occurs at low Froude
numbers when uniform and strongly stratified flow approaches two-dimensional and quasi
two-dimensional Gaussian-shaped obstacles. It was found that the lee-wave breaking process is
essentially independent of the two-dimensional and the quasi two-dimensional shape of the
obstacles. The attainment of the critical condition where the steepening wave becomes statically
unstable does not mark a threshold to breakdown. Instead, the wave remains dynamically stable for
several buoyancy periods, overturning into an “S”-shape with maximum overturning reaching
about 55° past the vertical. It is observed that the primary instability forms a quasi two-dimensional
spanwise vortex over the central portion of the obstacles and is mainly shear driven. The quasi
two-dimensional spanwise vortex persists for a few buoyancy periods before undergoing a
three-dimensional convective instability, similar to a Rayleigh—Taylor instability. As a result, an
array of toroidal vortex structures aligned parallel to the obstacle crest forms. These vortex
structures of size-3H are inclined into the flow yielding three strong components of vorticity.

© 2000 American Institute of Physid$1070-663000)01604-4

I. INTRODUCTION text. SmitH developed a nonlinear hydrostatic theory to pre-
dict the vertical location of the breaking region and the
The flow of uniformly stratified fluid over an obstacle associated increase of the wind speed and drag. Laprise and
such as a mountain can lead to stationary lee-waves.'tong pPeltief have undertaken the two-dimensional linear stability
developed a nonlinear stationary two-dimensional model foanalysis of Long’s steady-state nonlinear solution. They
these flows and showed that for sufficiently small obstacles ishowed that foF<F., in addition to a local convective
was in remarkable agreement with laboratory experimentsnode, the dominant instability mechanism is of a shear-flow
Clark and Peltie?, Peltier and Clark, and Laprise and type which feeds on the shear layer between the steepening
PeltieP demonstrated, from numerical simulations of un-wave level and the ground. The more recent three-
bounded flows, that when the Froude numbir (F  dimensional simulations by Afanasyev and PeRisyggest
=U/NH, whereU is the upstream velocity is the obstacle that the instability behavior is three-dimensional and similar
height andN=(—g/po dp/d2)*? is the Brunt-Visada fre- g the shear-aligned convective instability described by Klas-
quency is below the critical value,F., for which the sen and Peltié? in Kelvin—Helmholtz rolls. Further three-
streamlines overturn locally in Long’s steady-state solutiongimensional high-resolution simulations of gravity wave
the lee-wave becomes statically unstable and undergoesmeaking near a critical level by Fritts and IstérWinters
transition. The flow changes from a freely propagating interand D’Asaro'? and Andreasseet al.*3 or of propagating
nal wave flow, well described by Long’s model, to a differ- jnternal-wave breaking by Lombard and Ritéwlso suggest
ent configuration with a region of intense turbulence and ghat wave breaking is essentially dominated by three-
strong acceleration of the low-level flow in the lee of the gimensional instability in which both convective and shear
obstacle. This phenomenon is particularly important in thesffects can be important to varying degrees depending on the
meteorological context, because it is responsible for downpayticular conditions of the flow.
slope windstorms occurring on the lee-side of mountain  Experimental studies focusing on lee-wave breaking
ranges such as the Rocky mountdinse-wave breaking is sych as those by Rottman and Srittand Castro and
also responsible for a further increase in drag imparted on thg,ydet® have undertaken systematic towing tank experi-
atmosphere, which needs to be accounted for in numeriCghents to study the range & leading to wave breaking for
weather prediction models. . different obstacle shapes. These experiments mainly ad-
Theoretical investigations of the lee-wave breaking pheqressed the occurrence of wave breaking but did not describe
nomenon have been done essentially in Long’s inviscid congye |ee-wave breaking instability nor its evolving dominant
large-scale structures.
dElectronic mail: eiff@cnrm.meteo.fr Thus, it is the objective of the present paper to describe
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FIG. 1. Experimental setup.

by experiments using the small obstacles with increasing gap

new experimental results examining the three-dimensionaiPacings which did not reveal flow perturbations up t0 0.3 H.

features of the lee-wave breaking instability and the emerg- "€ €xperiments were performed with two-dimensional

ing large-scale vortex structures in the wave-breaking zone""li',"d 2ua§r|htwo—d|mens_|onal Gaussm.n—shlapedfllobstfslmg A
In Sec. Il, we describe the experimental facilities and proce- ig. 2). The streamW|s§ cross-sectiona pr? ! ezs or ot
pes of obstacles are given byx)=H exp(—x7/2L<) with

dures. Then, in Sec. lll, we present some complementa Lo q h N h of th .
results to the extensive study of Castro and Sridem the L.=0.57. Based on the total length of the mountaib, 2
We aspect ratio isl/L,=0.23, corresponding to a gentle to

lee-wave regimes for two-dimensional Gaussian obstacles i q loo& Th i ional ob | din th
order to situate the lee-wave breaking regime investigated jjjioderate slope. The two-dimensional obstacles, used in the

detall in the following sections. In particular, the process ofSmall and medium tanks, are uniform across the entire span-

lee-wave breaking is described in Sec. IV, beginning with arf¥IS€ direction, spanning the width of the tank except for a
overview of the transient evolutiofSec. IV A) and followed N spacing of 2 mm at the walls. The quasi two-

by the observed primar§Sec. IV B and secondary lee-wave dimensional obstacles, used in all three tanks, were chosen to
instabilities(Sec. IV Q. The three-dimensional nature of the make the flow as two-dimensional as possible and yet mini-

emerging large-scale structures in the breaking zone ighze tlge Lrj]pstre;lm pertyrbatuc)jns cal,!sedlbybflow lblockmg lfor
shown and discussed in Sec. V. F<1.”” Thus, the quasi two-dimensional obstacles are also

uniform along the spanwise direction, but the ends are

smoothed by the same Gaussian shape as in the streamwise
Il. EXPERIMENT d?rectio_n, in a semicircular manner. The quasi two-_

dimensional obstacles were scaled such that the spanwise

The experiments were conducted in three different wateaspect ratio \W/H) and confinementW/W,) in each tank
towing-tanks of sizeH;XW,XL,; equal to 0.%X0.5x4  were the same, specificallyV/H=10.3 andW/W,=0.45.
m3(small tank, 0.7x0.8x7 m® (medium tank and 1.5 3 (Note that the latter ratio required a separating wall to be
x 22 nt (large tank, which allowed three different Reynolds used in the small tank to adjugf, to 0.37 m) In the case of
number magnitudes to be examin¢8ee Fig. 1 for a sketch the two-dimensional obstacled//H=31 for the small tank
of the experimental set-upThese Reynolds number magni- andW/H = 24 for the medium tank. The maximum perturba-
tudes (ReeUH/v, whereU is the towing or freestream ve- tions due to upstream blocking and the resulting wall reflec-
locity and H is the obstacle heightvere 16, 10°, and 16 tions are expected to be obtained with the two-dimensional
for the three tanks, respectively. Baines and MaHissig-  obstacles as the end of tanks are approacimedeasing Nt
gest that Reynolds numbers exceeding several hundred aie the small tank, measurements of the longitudinal velocity
necessary in order to correctly model the large-scale turbuprofile, taken 30 L ahead of the end-wall at the moment
lence as encountered in atmospheric flows. Thus, only thevhen the two-dimensional obstacle is approaching at a dis-
high Reynolds number range is expected to be characterizadnce 40 L from the measurement location, showed that the
by fully turbulent conditions. Both the low and medium maximum upstream perturbation is less than).This po-
ranges, however, are still likely to yield the same fundamensition of the obstacle relative to the end-wall corresponds to
tal large-scale motions, as will be shown. the highest nondimensional times reported H&e=150).

Many experiments dealing with lee-waves in a stratified  The linear stratificatiofiNaCl solutior) was obtained by
fluid had adopted a towing-carriage technique where the oba computer-monitored filling process to yield Brunt-is&a
stacle was mounted on a flat baseplate suspended from tfrequenciesN, in the range ofN<[0.8,1.1 rad/s The lin-
carriage and towed upside-down across the stationary fluidarity does not maintain itself at the bottom or at the top of
(e.g., Hunt and Snyd¥). To avoid the perturbations gener- the tank due to convective and diffusive effects at those
ated by the baseplate, we preferred an upright towing conboundaries. This can be expected to pose a problem in the
figuration in which the obstacles were towed tangentiallycase of the bottom layer where the waves are generated by
along the bottom of the tank at uniform spedd)( In the the obstacles. However, tests with different thicknesses have
upright configuration the Reynolds numbers associated withevealed that the lee-wave dynamics are not affected when
the supporting threads, ranging from 0.5 to 60, induce negthe bottom layer thickness does not exceed 0.6 H. Care was
ligible downstream disturbances. The gap between the bastaken to ensure that this thickness was held well below this
plate of the obstacle and the tank floor, less than about 0.1 Himit at 0.2 H. Subtracting the depth of the top layer, the
also produces no significant flow perturbations, as confirmeeffective vertical confinement)) over which the stratifica-
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tion is linear was aboud/H =8 with a maximum root-mean (a)
square(rms) deviation of the linear density profile less than N B P PR
0.2%. Tests with higheb/H ratios (up to 4Q in the small 15
tank did not reveal an influence of this ratio on the wave field 8
in the lower lee-wave zone of interest. .

The flow was examined via two basic techniques, .
fluorescent-dye and particle visualizations. In both tech- N
niques, a thin laser sheet is used to illuminate a cross- b
sectional plane of the flow which is filmed by CGbharge .

coupled device cameras and recorded on S-VHS tape for

subsequent processing. In the fluorescent-dye visualizations, 0 ml . .
the dye was introduced into the flow by creating fixed verti- 0 5 10 15
cal (x2) fluorescent-dye planes along the length of the tank. /H

These planes were obtained by carefully pulling a vertical (b)

rake of thin cotton threads painted with fluorescent dye
shortly before towing the obstacle. The fluorescent planes b
appear as lines in any given horizontal laser-illuminated 8

plane. In the particle visualization technique, neutrally buoy- 10
ant particles spanning the range of densities in the stratified &
fluid are seeded throughout the fluid well in advance of the "

Two methods to analyze the resulting particle recordings

tows. Their settling velocity is, therefore, effectively zero. 5—:

were used: Particle-tracking and particle image velocimetry e
(PIV) based on the cross-correlation of two imadésl- 0 %ﬁ T
Insight™). The flows were also examined in two planes si- 0 Sx/H 10 5
multaneously, either with particle-tracking in both planes or (c)
particle-tracking in one and fluorescent-dye in the other. This PN BRI R U RN
was realized by using two laser sheets of different frequen- 15__%
cies in conjunction with appropriate optical filters mounted :N
on the cameras. 10_—@

For steady, incompressible flow, the pathlines obtained
from a time-integration of the particle displacements in the
particle tracking technique would be equivalent to stream-
lines and isopycnal lines. For the slowly evolving flows ex-

|

%

amined here, relatively short time integrations are used W
= i i e
(N6t=2) such that the pathlines can nevertheless be consid- (=
ered as approximations to stream and isopycnal lines. 0 5 y 10 15
z/H

lll. LEE-WAVE REGIMES FOR A TWO-DIMENSIONAL P S BN
GAUSSIAN OBSTACLE 197

In this section we give a brief review of the lee-wave ]

)
|

regimes as found for two-dimensional Gaussian obstacles
with an aspect ratioH/L, equal to 0.57. The lee-wave re-
gimes are mainly determined by the Froude number based on
H (F=U/NH), which quantifies the linearity of the flow,
while the Froude number based an(F  =U/NL) plays a

z/H

w

¢

ll.llllll‘l

secondary role, quantifying the nonhydrostaticity. Lbng
showed that nonlinear Boussinesq flow over an obstacle can 0 5 10 15

be described by a linear equati@delmholtz equationplus z/H

nonlinear boundary Condlt_lons' We have used ang'S moqelllG. 3. Streamlines over a Gaussian obstatléL(=0.57) computed from

to compute the lee-wave field under the assumption of invistong's (1953 two-dimensional inviscid and unbounded model. The flow is
cid flow and an unbounded upper boundary condition. Therom left to right and viewed in the obstacle frante) F=1.2, (b) F=1.0,
algorithm used to obtain the solution follows that of Laprise(c) F=0.97,(d) F=0.9.

and Peltie?® where the governing Helmholtz equation is

solved using Fourier transform techniques and where theaumbers F={1.2,1,0.97,0.9). The results in Fig. @) show
correct nonlinear lower boundary condition is implementedthat for F=0.97, the streamlines become vertical. This criti-
iteratively. Figures 8&)—3(d) show the streamlines of the cal Froude numberf;., thus marks the limit of a statically
resulting wave fields computed for four different Froudeunstable density gradient where it is generally assumed that

o
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F=1 [Fig. 4b)], on the other hand, the flow fluctuated about
Long’s steady solution over a long time scélt~50) with
occasional breaking. Essentially continuous breaking was
observed for-<0.8, as shown foF =0.6 in Fig. 4c). The
flow can, therefore, be divided into three regimes, a freely
propagating wave regime fdF>1, an intermittent wave-
breaking regime for +F>0.8, and a lee-wave breaking re-
gime for F<0.8. The remainder of this paper, focusing on
the breaking regime, will be undertakenFat 0.6.

IV. LEE-WAVE BREAKING PROCESS
A. Overview of transient evolution

Since the flow starts impulsively from rest, we begin by
examining the transient evolution leading to wave breaking.
Using a two-dimensional obstacle in the small tank
(Re=150), the flow was simultaneously examined in two
orthogonal planes in order to gain an understanding of pos-
sible three-dimensional aspects. The two planes chosen were
the vertical kz) symmetry planey/H=0) and the horizon-
tal (xy) plane through the center of the wave breaking region
(z/H=3). In the vertical plane, the flow was visualized us-
ing particle-tracking in order to identify the wave field. In the
horizontal plane, fluorescent dye visualization with fixed ver-
tical sheets was used in order to verify the two-
dimensionality of the flow. Figures(&[i—vii] and Jb)[i—

vii | show the results at various stages of evolution leading to
wave breakingNt={20,24,34,38,42,46,51 Figures %a)[i—

vii] show the pathlines in the verticatf) plane while Figs.
5(b) [i—vii ] show the simultaneously obtained dye or streak-
lines in the horizontal Xy) plane. Although the vertical
sheets of dye were introduced into the fluid just prior to the
tow and were initially parallel and straight, weak large-scale
horizontal background motions which generate deformations
by the time of the tow are usually unavoidable. Fortunately,
however, these deformations can be distinguished from the

0 5 10 15 smaller-scale deformations induced by the flow when view-
z/H ing the continuous evolution recorded on video. Thus, the
FIG. 4. Pathlines over a two-dimensional Gaussian obst&tie € 0.57) at _ma'n featgres that Cfan be_ |nterprgted from the ylsual.lzatllons
Nt=150 and Re-150.(a) F=1.2, (b) F=1.0, (d) F=0.6. in Fig. 5, in conjunction with the video, are depicted in Fig.
6, for clarity.

In Figs. 5a—i) and §a-i), at Nt=20, it can be seen that
wave breaking is about to occur. Under linear hydrostatidthe wave on the lee-side of the obstacle is still steepening.
theory (e.g., Quene¥) vertical steepening occurs fdf, By Nt=24[Figs. a-ii) and Ga-ii)] the wave is vertical and
=1, but the nonlinear lower boundary condition in addition has, therefore, reached the critical condition where the local
to the nonhydrostatic effect characterized by yields the  flow becomes unstable. However, this condition is only stati-
slightly lower value of 0.97 forr, /[F=H/L=0.57. These cally unstable. Rather than evolving directly and rapidly into
nonlinear and nonhydrostatic effects also cause the locatioa “turbulent” zone, the wave slowly overturns into the form
of the maximum steepening to move slightly downstream ofof an “S,” as seen in Figs. G-iii)) and Ga-iii) at Nt=34.
the obstacle cregf:?2 Fourteen buoyancy periods after reaching the critical condi-

Figures 4a)—4(c) show experimental wave fields at tion, at Nt=38, the flow is still overturning with the maxi-
Nt=150 and Re150 for F={1.2,1.0,0.5, obtained via mum unstable inclination of the wave approaching about 55°
particle-streak visualizations. These experimental conditionsvith respect to the verticdFigs. Ja-iv) and Ga-iv)]. Similar
are viscous and the upper boundary condition is boundedbservations of S-shaped isopycnals which persist for long
(D/H=28) in contrast to Long’s model, which is inviscid periods compared to the wave period were also made by
and unbounded. Nevertheless, fB=1.2 [Fig. 4@)] the  Thorpé&?in the case of a stratified fluid oscillating in a rect-
wave field can be seen to be in good agreement with Long’angular tube. In agreement with the present results, Thorpe
solution[Fig. 3(@)] and was also observed to be steady. Atconcluded that the selection of a condition in which isopyc-
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nals become vertical as a limit for finite amplitude evolutionthat can be inferred are large-scale deformations which are
of internal waves may be arbitrary and unrealistic. due to the background disturbances in the tank. Repetitions
Figures %b)[i—iv] and @b)[i—iv] show the correspond- of the experiment confirmed that these deformations are un-
ing horizontal plane results. They reveal that the flow re-correlated with the dynamics of the wave breaking process.
mains essentially two-dimensional up to =M88, even In the late stages of the overturning, the S-shape does
though the wave has overturned. The only spanwise motionsot remain symmetric: At Nt38[Figs. Ja-iv) and Ga-iv)],

@) Nt=20 ®

! Horizontal Vertical
- plane, (b) plane, (a)
R
0
(i) Nt=24
5
0
0 5
z/H (iii) Nt=34
5
=
e
. EEANNY .
S - >
0
o] S 10
z/H

(iv) Nt=38

»/H

FIG. 5. Simultaneous flow visualizations in two planes intersecting the wave breaking region over a two-dimensional Gaussian obstHs() @Re
Nt={20,24,34,38,42,46,50(a) Pathlines in verticalXz) plane aty/H=0, (b) fluorescent-dye images in horizontaly) plane atz/H=3.
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(vii) Nt=50
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0
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0 5 o] Sx/H 10
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FIG. 5. (Continued)

it can be seen that the upper half of the S has contractef(b-v) and &b-v)]. The implication is that a quasi two-
more than the lower half. A few buoyancy periods later, atdimensional spanwisexy;) vortex has developed. However,
Nt=42, this contraction of the upper half of the overturning significant spanwise motions can be observed near the edges
wave leads to a topological change in the structure of thef the flow, suggesting that the billow does not remain two-
flow: The formation of a clockwise rotating vortgfigs.  dimensional over the entire width of the obstacle.

5(a-v) and Ga-v)]. The emergence of this vortex is directly The vortex continues to grow for several buoyancy pe-
associated with the appearance of a saddle point dowmriods as seen in the verticat) plane results at Nt46 [Fig.
stream, as it must in order to satisfy the kinematic demandS(a-vi)]. At this stage, however, significant spanwise motions
of the flow. Interestingly, except near the walls of the tank,can be inferred from the kinks apparent in the streaklines,
the flow has essentially remained two-dimensional in thesuggesting that the motion has become three-dimensional. A
breaking zone during this process since no significant sparfew buoyancy periods later, by N&0, the topology of the
wise motions can be detected in the horizontal plgfigs.  flow has again undergone a topological chajfggs. Sa-vii)
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(@ ® B
@ Nt =20 — 3
g
(ii) Nt =24 1
(iii) Nt =34 o

FIG. 7. Pathlines in the vertical center plane over a quasi two-dimensional
obstacle in the large tank. The obstacle measures 1.léngth by 2.5 m
(width) by 0.13 m(heigh). Re=8000, Nt=21.

(iv) Nt=38

The emergence of a spanwise vortex in the fiydd =0
vertical plane after the wave overturns into an S-shape was
(v) Nt =42 also observed with the quasi two-dimensional Gaussian ob-
T stacles for all Reynolds number magnitudes investigated, in-
cluding the high Reynolds number magnitude under fully
(vi) Nt =46 - turbulent conditions (Re 10%). It can, therefore, be consid-
e ered that the uniform extent of the quasi two-dimensional
obstacle is wide enough such that the overturning wave
B - breaks down as with the two-dimensional obstacle. In addi-
tion, this breakdown appears to be independent of the Rey-
nolds number. Figure 7 displays the pathlines in the central
vertical plane at Re8000 for a quasi two-dimensional ob-
y stacle. Clearly, as in the lower Reynolds number experi-
X ments, a clockwise vortex can be identified after the wave
has overturned into an S-shape.
FIG. 6. Corresponding schematic representation of the flow visualizations ~ Details of the flow conditions just prior to the spanwise
results shown in Fig. 5a) Vertical (xz) plane,(b) horizontal ky) plane. vortex roll-up have been investigated by applying the PIV
technique to the particle visualizations of the -F&H0 ex-
periments. Assuming streamlines to be approximately equal
and Ga-vii)]. The flow now consists of two counter-rotating to isopycnals for this slowly evolving flow, vertical density
vortices in conjunction with twg¢necessarysaddle points. In  profiles [p(z)] could also be estimated by evaluating the
the horizontal xy) plane[Figs. §b-vii) and @b-vii)], the  value of each isopycnal at the upstream density gradient.
streaklines have become very perturbed in the spanwise dirigure 8 shows a PIV velocity vector field in theH=0
rection, i.e., implying that the flow has become highly three-vertical plane just prior to the clockwise vortex formation.
dimensional. The flow was generated by towing a quasi two-dimensional

(vii) Nt =50

——

mROY N AVRPNEAN

B. Primary instability

BABSEBREESLE
The preceding results show that the first wave break- Bt jjj::\m\)\)\):):::::
down yields a spanwisew(;) vortex. This is essentially a AR ST T
two-dimensional process since no significant spanwise mo- PRGNy
tions over the central portion of the obstacle crest were de- A ( = T
tected. The two-dimensionality is confirmed by the consis- ., zr - ’\' niedstnd
tent observations of spanwise vortices forming in the fixed At oo e
y/H=0 vertical plane for all repetitions of the experiment. R o
The ensuing counter-rotating vortex pair, on the other hand, Dttt IASAsasletetetuend
. . . . sl T Ty >
was not consistently observed. Since three-dimensional s ascaginesfsts st sias
structures are expected to yield different topologies depend- 1 s~ gy
ing on their position relative to a fixed plane of visualization k s> s
while a two-dimensional structure necessarily yields the 1 2 3 4 5
same topology, the consistent observations of spanwise vor- wH

tices support the conclusion that the single spanwise vortex
IG. 8. Velocity vector field in verticalXz) plane aty/H=0 obtained via

.formatlon IS e_ssentlall_y t\l\(o-dlmens_lonal, _Whereas the enSLEIV. Re=580, Nt=24, quasi-two dimensional obstacle. The shaded region
!ng _Vortex pa_” formatlon_ IS three-dlmensmnal_ as SqueSte% statically unstable(The dashed line shows the position of the profiles
in Figs. 5b-vii) and @b-vii), and demonstrated in Sec. IV C. presented in Fig. 9.
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a) convective instability is simultaneously satisfied sirige

(
3.5 ' ' <0 below.
The stability analysis of Winters and Rilé§examining
25F - internal wave-breaking near a critical layer, showed that the
type of instability, shear or convective, which generates the
sk | fastest growing mode with spanwise vortices depends on the
' relative importance of the unstable stratification with respect
to the shear. Using perturbations in the-plane they found

0.5 . . . i iva i va i
1.098 1400 1.102 1104 1.106 that streamwise convective mstablll(cye., convective Insta-

z/H

p (9/mme3) bility resulting in spanwise vorticédbecomes only dominant
55 . . . ®) for vanishing shear. Strong shear, on the other hand, com-
pletely inhibits streamwise convective instability; instead the
spanwise vortices grow due to the kinetic energy of the
257 i shear. At intermediate shear values, the instability of the fast-
s est growing mode is due to both shear and convective effects
151 . and is similar in appearance as in the strong shear situation.
Winters and Rile# show that the relative importance of
05 , , , , shear with respect to unstable stratification for the fastest
-05 00 05 o 0 15 20 growing modes is determined by the bulk Richardson num-
(©) ber, J=(NL./U.)?, where U, and L. are characteristic
35 - - scales of the shear profile. For the “strong” shear situafion
/ never exceeds 0.25. “Intermediate” shear values are for val-
D] —— i ues ofJ just above 0.25 while “vanishing” shear occurs in
T the larged limit. In the present flow, where a similar phase-
N \ relationship between the unstable density profile and the
sr i shear profile occurs prior to the formation of a spanwise
vortex,J was estimated to be about 0.18 from the density and
08 velocity profiles shown in Figs.(8) and 9b). (U, was cor-

Ri respondingly taken as the velocity defect dndhe width of
) _ _ the defecd. The value ofJ being smaller than 0.25 suggests
FIG. 9. Verticalz profiles atx/H=2.7 for Re=580, Nt=24, quasi two- t sh is th in driving f ith th fi
dimensional obstacle. The location of the profiles is indicated by the dasheg']."’l S earis . € ma'n rnving _Orce wi e convective con-
line in Fig. 8.(a) p(2), (b) u(2)/U, (c) Ri(2). tribution playing a minor role in the formation of the span-
wise vortex.
Using disturbances in thgz-plane which are not influ-
enced by the shear in thx-plane, Winters and Rilé§ show
that for the fastest growing modes, spanwise convective in-

ObStZCIe'I I C?nt bfhseenﬂ':lhat tfhel dvzloc_ni/ \ée_cttl):r_ f'eédf Cotr;e'stability, yielding modes with streamwise vortices, exists for
sponds closely to the pathiine field depicted In F1g. S 10r ey g 55 1) inear stability theory predicts that this streamwise
case of the two-dimensional obstacle at lower Reynold

. . . Tnode grows at about half the rate as the spanwise mode,
number just prior to the vortex roll-up, spemﬂcallyaS—shapefrom which they conclude that the instability is three-

with the top portion of the S being more contracted than thedimensional. Rather than being truly three-dimensional, we

bottom. The cross-hatched zone in Fig. 8 identifies the regiogbserved that the spanwise vortex in a givenplane is

where the stregmllnt_as anq thus the |sopycna_l lines have OVelissociated with a quasi two-dimensional vortex extending
turned, rendering this region of the flow statically unstable.

) . : along they direction. Small streamwise deformations associ-
Figures 9a)—9(c) show the corresponding density, ve- . . .
. . . . ated with this vortex could be the result of streamwise con-
locity and gradient Richardson profild(z), u(z), and

Ri(z)=N2/(du/d2)?] through the center of the overturned vec.t|ve instability, but do not appear S|gn|f|cant in the ex
_ . . . .~ periments, as would be expected from their smaller growth
wave atx/H=2.7. Similar to the vertical phase-relationship : o ;
e ! rate compared to that of the shear instability generating the
between the shear and stratification profiles analyzed b

Winters and Riley* it can be seen that regions of strong panwise vortex.
shear coincide with stable stratification and regions of weal&
shear with unstable stratification. Near the boundaries of the"
statically unstable fluid, the shear is strongest Rik) lies The simultaneous views of the vertical and horizontal
between 0 and 0.25 for a thin region outside the boundarieglanes discussed in Sec. IV A showed that shortly after the
of the statically unstable region. Thus, shear instability carspanwise vortex has formed, the lower portion of the
occur according to the theorem of Mif8sand Howard®  S-shaped wavén the vertical plangforms into a vortex of

since 0<Ri<0.25 somewhere in the flow. Of course, this opposite rotation(at Nt=50), thus yielding a counter-

criterion is strictly only valid for parallel and horizontal rotating vortex pair. Simultaneously, in the horizontal plane,
shear as well as infinite Re number, and the condition fothe previously unperturbed and uniform flow becomes

Secondary instability
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the edges in each view is due to the movement of the par-
ticles through the laser sheet. Nevertheless, the pathlines in
the wave-breaking region reveal counter-rotating circulatory
patterns indicating the presence of counter-rotating stream-
wise vortices, characteristic of streamwise convective insta-
bility as observednumerically by Winters and Rile$* and
also by Andreasseet al® or Afanasyev and Peltier.

Afanasyev and Peltierwho present a three-dimensional
numerical simulation of stratified flow over topography, pro-
pose on the basis of their numerical simulations as well as
the preceding laboratory experiments of Voropageal?’
in an overturned linearly stratified fluid, that thin pairs of
horizontal layers of relatively lighter and denser fluid form as
a result of the vertical isopycnals of the steepening wave.
These layers subsequently become unstable, resulting in the
formation of arrays of mushroom-like convective structures
= H in the yz-plane. They conclude that the streamwise vortices
are created by the shear-aligned convective instability
mechanism of Klassen and Peltfér.

In the present laboratory experiments, the unstable sys-
tem does not consist of several pairs of unstable layers but

strongly perturbed, implying that this evolution is three- instead of a heavy spanwise vortex lying above a light layer
dimensional in nature. A more detailed fluorescent dye visuof unstable fluid. Yet, similar to the convective mushroom-
alization in the horizontal plane at the level of breaking, alsdike structures observed by Voropayetal®’ or Afanasyev
performed with a quasi two-dimensional obstacle atand Peltief this system is subsequently observed to become
Re=150, is shown in Fig. 10 for Nt50. It clearly shows unstable with significant up and down-drafts associated with
thatseveral separate structures inxlyeplane have formed at  Streamwise convective structur@sg. 11). However, the oc-
the same time as the spanwise counter-rotating vortex paig¢urrence of a second spanwigeounter-clockwisg vortex
For example, near the center of the picture, an undeformewhich has been observed to form simultaneously is, given
streakline can be seen between two adjacent structurethe results in the other planes, necessarily part of a three-
Clearly, the initially quasi two-dimensional spanwise vortexdimensional structure. Similar spanwise vortices were not
has separated into distinct structures. reported in the studies by Afanasyev and Peltard Voro-
Figure 11 shows the pathline pattern at the same time agayevet al?’ Thus, there appear to be differences between
above(i.e., Nt=50), but in the frontal yz’) plane intersect- the observed mechanisms.
ing the wave-breaking region. This plane is slightly inclined  In the topographic flow simulations of Afanasyev and
at 13° with respect to the axis (defined as’) so that the Peltief these differences are likely due to their use of a
flow can be viewed through the surface of the water. Twofree-slip boundary condition. Recent direct numerical simu-
parallel cameras were used in order to span a wider extent d¢ditions at Re=200 by Gheusiet al?® of the same flow as
the flow and the laser-light sheet was made relatively thickdiscussed here over a two-dimensional obstacle have shown
(~1 cm to capture the vortex motion. Outside the wave-that a free-slip condition on the surface of the obstacle results
breaking region the pathlines are expected to be vertical anid a mixed layer which continuously extends downstream
their apparent inclination in Fig. 11 which increases towardgrather than being confined above the lee-slpagrad both the

FIG. 10. Fluorescent-dye image in horizontadyf plane atz/H=2.5.
Re=150, Nt=50, quasi two-dimensional obstacle.

FIG. 11. Pathlines in the frontaly¢’) plane through the wave-breaking region.=R&0, Nt=50, quasi two-dimensional obstacle.
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which could inhibit spanwise structures by being narrower
than the wavelength of this amplified disturbance.

V. DOMINANT VORTEX STRUCTURES
A. Vortex model

The emergence of the second spanwise vortex yields a

counter-rotating vortex pair as seen in Fig.(d-3 at low
H Reynolds numbef150) or in Fig. 12 at high Reynolds num-
FIG. 12. Pathlines in the verticg¥ H=0 plane at high Reynolds number ber (8009. The str_eamllne pattem. of t.hese counter-rotating
over a quasi two-dimensional obstacle.=R8900, Nt=118. vortex structures is represented in Fig.(d-#). However,

this topology, which is independent of the Reynolds number,

does not always occur in the vertical planes after the three-
mixed layer and the associated lower layer of acceleratedimensionalization. Instead, a different topology can some-
fluid propagate downstream. Furthermore, no trapped ledimes be identified as seen in Fig.(b3d) and in the corre-
wave is observed anymore and the maximum downslopsponding streamline pattern in Fig. (b3i). A common
wind speed has accelerated to about3.higher than the feature that was observed in these cases is that the critical
situation when surface friction is accounted forZ.3U, in points (focal and saddle pointshave disappeared and that
agreement with the experimeptSimilar observations were the flow in the wave-breaking region is upward and stream-
also made by Richardt al?® In the topographic flow simu- wise. Usually one or both of the negative and positive open
lation with a free-slip condition of Afanasyev and Pelfler, bifurcation lines seen in Fig. 18-ii) can be identified, which
similar propagative character was observed. Thus, thendicates that the flow is not two-dimensional since the di-
streamwise confinement is effectively removed, yielding avergence is nonzero.
convective instability with predominantly streamwise vorti- In the frontal {yz') plane through the wave-breaking
ces. In the case of the experiments by Voropagesl,? the  region (Fig. 11), several pairs of adjacent counter-rotating
overturned tank is very narrow in the streamwise directionyortex pairs were identified, while in the horizontaty{

[¢] 1 2

(a-ii)

5
T
N
0
0 5
x/H
(b-i) (b-ii)
5
T
N
0
0 5
z/H

FIG. 13. Sectional streamlines deduced from particle-tracking results iy khe O vertical (xz) plane(Re=150). Two different topological patterns can be
observedi(a) Two counter-rotating focal points with two saddle points, @ndno focal nor saddle points.
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y tional streamlines in a vertical plane through the center of a
torus yield one counter-rotating vortex pair, sectional stream-
lines in frontal (yz') and horizontal Xy) planes through the
array of vortices are expected to yield several aligned
counter-rotating vortex pairé~ig. 15, each pair associated
with one torus.

B. Experimental confirmation

V2\/ Simultaneous measurements in at least two planes are
vertical (xz) planes needed to confirm that the observed topologies in each plane
can indeed be attributed to the type of three-dimensional
vortex structures proposed in the model. Similar simulta-
neous fluorescent-dye and particle tracking experiments as
described in Sec. IV A were carried out at-RE50 for both
13 the two-dimensional and the quasi two-dimensional ob-
frontal. (72 dinlane stacles. They revealed that the “relaminarized” topology of
Fig. 13b) exists between two adjacent structures in the hori-
zontal plane while the counter-rotating vortex pair is ob-
\\@ served between adjacent structufery. 13a)]. The fluores-
cent dye in the horizontal plane, however, did not clearly
X reveal the topology of those structures and therefore experi-
ments examining the vertical and horizontal planes simulta-

FIG. 14. Proposed vortex skeleton model of the dominant structures in th . - . . .
wave-breaking region over an obstacle. The co-rotating toroidal structureEIeOUSIy with the pamCIe traCkmg technlque were carried out

are inclined and, therefore, exhibit strong vorticity components in all threedt Re~600 for both types of obstacles.

directions. The three planes of investigation are indicated with respecttothe  The results for the quasi two-dimensional obstacle with
inclined vortices. the xz-plane fixed aty/H=0 and thexy-plane atz/H=2.5

are shown in Figs. 1@)[i—ii] and 1&b)[i—ii], respectively.

. T The horizontal xy) plane at N&64 shown in Fig. 1@-i)
plane, th_e _ﬂuorescent dye visualizatiofig. 10 have ' reveals at least two counter-rotating vortex pairs in the wave-
vealed distinct structures. To account for these tOpOIOQ'C.aﬂ)reaking region, roughly aligned along the spanwise direc-

features in the three planes, the vortex model shown in Flg[’|on. Taking into consideration the senses of rotation of these

14 is proposed. The vortex structures are toroidal or ”ng'“kestructures, it can be inferred that two pairs are centered

and are inclined with respect to the horizontal. In this Con'aroundy/H~0. Therefore, no critical points are expected in
figuration they are associated with strong vorticity compo-

nents in all directions. Sectional streamlines in a verticalthe y/H=0 vertical plane, which is verified by the inferred

olane intersecting the flow near the center of a taplane sectional streamlines in Fig. (&i). At Nt=128, one vortex
V1 in Fig. 14 would reveal the topology of Fig. 18. On pair can be identified in the horizontal plajféig. 16b-ii)].

the other hand, no foci but strong upward flow as in Fig.Smce the center of the vortex pair is now aligned laterally

. . . . H~ - i i
13(b) would be observed in a vertical plane positioned in thearoundy/ 0, we expect a counter-rotating vortex pair to

. ; . A . appear in they/H=0 vertical plane—as evident in the re-

;ﬁféggozemg”a‘rvevoeiggigt S‘ﬁl‘(’;':”lﬁ ‘;ng‘af ;?O-Wl*é E;erfecf“'ts displayed in Fig. 1@-ii). Thus, these experiments con-
. ; . ) irm the three-dimensional topological features expected

symmetry plane is unlikely to exist and furthermore unllkelyfrom the presence of toroidal vortices
to be coplanar with the plane of examination. Since in the '
experiment the vertical plane of examination was fixed with
respect to the obstacle, the observed changes of topology
between the ones depicted in Figs(d2and 13b) would be C. Spanwise alignment and scales
the result of spanwise advection of the vortices. While sec-

~40° (& ., - horizontal (xy) plane
.

According to the proposed vortex model, the topology in
either the horizontalxy) or the frontal {/z’) planes consists

of a spanwise array of counter-rotating vortex structures as

depicted in Fig. 15. This topology is in agreement with the

x,2z’ one inferred from the pathline patterns in the frontal plane
4_1 shown previously in Fig. 11 for a two-dimensional obstacle
y at Re=150. Pathline patterns in the horizontal plane, for the

same obstacle and Reynolds number magnitude, are shown
in Figs. 17a) and 17b). In this plane two cameras were

FIG. 15. Sectional streamline pattern deduced from the vortex model inoverlapped with separate zooms. The narrow zoom in Fig.

either the horizontalxy) or frontal (yz') planes. The planes intersect the _17(b) clearly S_hOW§ th Counter-rqtating vort_ex pairs aligned
centers of the vortices. in the spanwise direction. The wide zoom in Fig(d7re-
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FIG. 16. Simultaneous particle-tracking results in the vertiga) plane aty/H =0 and the horizontalxy) plane atz/H=2.5, intersecting the wave breaking
region. Re=580, quasi two-dimensional obstac(e) xz-plane:(i) Nt=64, (ii) Nt=128; (b) xy-plane:(i) Nt=64, (ii) Nt=128.

veals one additional pair and possibly two more. Assumingspacing, although slightly larger in this instance, is about 2 H
symmetry of the flow, about six vortex pairs are, thereforejn both the simultaneously sampled vertical and horizontal
aligned parallel to the obstacle crest, spanning about half thplanes, suggesting that the ring-like nature is independent of
obstacle width. Outside of this region, three-dimensional efthis Reynolds number range as well as the obstacle shape.
fects due to the presence of the walls are evident. The average wavelength of the vortex spacing for the quasi

The spanwise separation between the centers of the votwo-dimensional obstacles at both Reynolds numbers exam-
tex pairs apparent in Fig. 17 ranges from about 1-1.5 Hined also appears to be independent of these two factors,
Given that six pairs span about 16 H, the average center-taanging from about 1 to 2H, while up to three pairs could be
center spacing is found to be about 1.3 H, implying that onadentified over the uniform section of the obstacle crest. It
pair extends over 2.6 H. In the other planes of the flow,can be noted that the numerical simulations atRe0 over
roughly the same scales were obser(efd Figs. 11 and 5  a two-dimensional obstacle by Gheuasial > revealed char-
suggesting that the structures are approximately ring-like aacteristic lateral ¥) wavelengths of about 2.4—4 H indepen-
depicted in Fig. 14. For the quasi two-dimensional obstaclelently of the different types of initial perturbations applied
at Re=580 shown in Figs. 1@-ii) and 1&b-ii), the vortex (white noise, harmonic or lateral wallsThese wavelengths
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overturning region, and was found to be independent of the
Reynolds numbers or the obstacle shapes examined. In the
case of the two-dimensional obstacle about six rings have
been identified, spanning roughly half the total obstacle
width, beyond which the flow is three dimensional due to the
wall effects. For the quasi two-dimensional obstacle, up to
three rings have been identified, spanning almost the extent
of the uniform section of the obstacle ridge.

The presence of separate ring-like structures explains the
initially perplexing results in the vertical planes. The stream-
lines in these planes were occasionally marked by the ab-
sence of critical points in the wave-breaking zone, similar to
the wave steepening but occurring after a period of strong
wave-breaking activity. Such an apparent relaminarization in
the wave breaking region could be interpreted as a decay of
the wave-breaking activity, if three-dimensional effects are
not considered. However, rather than being relaminarized,
the strong wave-breaking activity is concentrated in separate
zones whose large-scale organization takes the form of ring
vortices. Adjacent to such vortices, on the other hand, the
flow is relatively calm with no critical points. Spanwise ad-
vection of the vortex structures will cause a shift in the flow
patterns observed in any fixed vertical plane and explain the
apparent relaminarization.

The primary instability takes the form of a quasi two-
dimensional spanwise vortex. In analogy with similar shear
and stratification profiles as those analyzed by Winters and
FIG. 17. Pathlines in the horizontaky) plane atzZH=2.5. Re=150,  Riley,2* the bulk Richardson number computed from the un-
Nt=50, quasi two-dimensional obstacle) Wide zoom with camera one;  gtaple stratification and shear profiles just prior to the vortex
(b) Narrow zoom with camera two. . L o .

formation suggests that this instability is essentially shear

driven since the contribution of convective instability in the
also correspond to a vortex spacing of 1.2—2 H, in agreemenfertical (x2) plane is small. Winters and Rilépredict that
with the range of experimental values. convective instability in theyz-plane has a smaller growth
rate than the shear instability in thixe-plane which is con-
VI, CONCLUSION S|stent_ with our obgervatlon of a quasi two—dmgng_onal

spanwise vortex without the appearance of significant

Experiments were carried out to characterize the leestreamwise vortices. The results are also in agreement with
wave breaking process and the resulting large-scale stru®eardorff® who showed that the critical Rayleigh number in
tures. The experiments with two dimensional Gaussianthe presence of shear is higher for spanwise than for stream-
shaped obstacles covered the low Reynolds numbewise structures, implying that shear will inhibit streamwise
magnitudes 1 and 13 and those with quasi two- convective instabilityyielding spanwise rolls but not span-
dimensional Gaussian-shaped obstacles also covered the twise convective instabilityyielding streamwise rol)s
bulent Reynolds number magnitude “10ndependent of The ensuing secondary instability is highly three-
those Reynolds numbers or obstacle shapes, the results hadienensional and displays some of the features of the shear-
shown that the initial wave steepening as well as the subsealigned convective instability mechanism observed by Afa-
quent wave overturning into a S-shape are two-dimensionahasyev and Peltidrin that a strong mode with streamwise
As a result of this two-dimensional overturning a singlevortices is observed. These streamwise vortices, however,
roller parallel to the obstacle crest forms. This spanwisere not in the shape of long streamwise rolls, but are instead
roller extends over a significant portion of the uniform sec-part of the inclined ring-vortices with significant components
tion of either the two dimensional or the quasi two- of vorticity in all directions. Each ring vortex is associated
dimensional obstacle. Subsequently, the flow in this regiorwith a strong central down-draft, so that the structures
becomes highly three-dimensional, leading to counterclosely resemble those resulting from a three-dimensional
rotating vortex pairs in all three planes of the flow. Rayleigh—Taylor instability as shown numerically by Tryg-

A vortex model is proposed to account for the dominantgvason and Unverdit These authors examined the fully
large-scale counter-rotating vortex pairs. It consists of toroithree-dimensional deformation of an interface between two
dal or ring-like vortices aligned in the spanwise direction, thefluids in the limit of weak stratification in a rectangular do-
planes of which are inclined with respect to the horizontalmain perturbed by a two-dimensional disturbance and found
(~40°). The center-to-center vortex spacing of these ringshat as a “blob” of heavy fluid falls down, the baroclinically
in all directions is about 1 to 2 H, roughly the height of the generated vorticity forms a closed vortex ring around this

wH

w/H

z/H
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