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a b s t r a c t

Despite the recognized impact of tidal bores on estuarine ecosystems, the large scale mechanism of bore
formation in convergent alluvial estuaries is still under investigation. So far, field data exist only for
a small number of estuaries, while numerical simulations employ the shallow water equations mainly
focusing on the small-scale and local processes. In this work, firstly we apply the fully nonlinear weakly
dispersive Serre–Green–Naghdi equations to simulate the tide propagation in a convergent estuary of
idealized form, verifying that the local dispersion effects, responsible for the appearance of the secondary
waves, do not influence the tidal bore onset, which only results from the large scale processes of
amplification/damping and distortion of the incoming wave. In a second part, we numerically investigate
(225 runs) the estuarine parameter space in order to identify the physical conditions that lead to tidal
bore generation. In this parameter space, we determine a critical curve which divides estuaries according
to tidal bore occurrence. As a result of this investigation we have shown that bore formation is controlled
by the competition between two physical processes: (a) the knee-shaped distortion of the tidal wave, with
flood dominance and eventually bore inception; (b) the dissipation of the tidal wave, which is unfavorable
to bore formation. We also provide evidence that amplification due to topographic convergence is not
a necessary condition for tidal bore generation and that there exist estuaries which display both wave
damping and bore development. Finally, the validity of the results has been also assessed in the presence
of freshwater river discharge, showing that for low river discharge, its effect on estuarine dynamics can
be neglected.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Tidal wave transformation in convergent alluvial estuaries
plays a crucial role in the development of a sustainable manage-
ment of water resources. For this reason, and to better understand
the human impact on the estuarine ecosystem, it has been the sub-
ject of intensive scientific research. Parametric studies conducted
in [1–5] have shown that, when neglecting river discharge effects,
the estuarine hydrodynamics is controlled by only three dimen-
sionless parameters. These parameters represent a combination
of the properties of the tidal forcing at the estuary mouth (wave
amplitude and period), the large-scale geometrical characteristics
of the channel and the friction coefficient. For particular conditions
of the above dimensional variables, of freshwater flow and of river
channel bathymetry, the tidal wave may result strongly distorted
when the flow turn to rise, and a bore can be observed at the
beginning of the flood tide.
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In the lower part of the estuary, tidal wave propagation can be
well described by the so called Saint Venant or Nonlinear Shal-
low Water (NLSW) equations with friction (cf. [6]). However the
onset of a tidal bore and its evolution upstream is controlled by
non-hydrostatic dispersive mechanisms (cf. [7]). Even if Madsen
et al. [8] and Pan and Liu [9] have shown that the non-dispersive
NLSW equations with shock capturing methods can still be used to
simulate breaking bore propagation with relatively good results,
undular bores require the use of other long wave modeling ap-
proaches. If weakly dispersive weakly nonlinear Boussinesq-type
equations can be adopted to describe the onset of the tidal bore
(cf. [7]), the nonlinear evolution of high-intensity bores requests
fully nonlinear equations to be employed, as for example the Serre–
Green–Naghdi (SGN) ones (cf. [10–12]). The first part of thiswork is
thus devoted to reproduce the progressive formation of an undular
tidal bore inside an idealized estuary using the SGN equations.

The results obtained in this first part will then justify the
use of the NLSW model to investigate at large scales how the
three dimensionless parameters, which control the estuarine long
scale dynamics, influence the physical processes of amplifica-
tion/damping and distortion which may lead to the bore onset.
These processes take place at large spatial and temporal scales,
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where the non-hydrostatic effects associated with tidal bores can
be neglected. Some numerical studies already used the NLSW
system to simulate the propagation of tidal waves in rivers up
to bore formation, but they are limited to a single [8,9] or to a
small number [4] of estuaries. A similar limitation concerns also
field data: since every estuary in nature represents a unique com-
bination of the three dimensionless variables, we dispose only of
a limited number of points in the parameter space coming from
in situ measurements. Based on the set of data available, it is
very difficult to understand how such parameters influence the
bore development process. In this paper, we bypass this major
constraint through a numerical investigation of the whole space
of dimensionless variables. This allows us both to characterize the
global conditions for tidal bore occurrence and to analyze for each
estuarine regime the nonlinear processes associated with tidal
wave transformation. Our approach is based on a scaling analysis
introduced in [13], where the reader can also find a collection
of estuary data, which are used here to validate our numerical
investigation.

The paper is structured as follows: Section 2 introduces the
idealized geometry used to accomplish our study and defines the
dimensionless parameters emerging from the scaling analysis of
the governing equations; Section 3 provides some details con-
cerning the numerical discretization of the SGN system, and a
discussionmotivating our choice of boundary conditions; Section 4
describes the computations setting and introduces a criterion for
bore detection, based on experimental observation in situ; the
numerical simulation of the onset of an undular tidal bore inside
an idealized estuary is presented in Section 5; Section 6 discusses
the numerical investigation on the favorable conditions for tidal
bore occurrence, showing the main findings of the study; finally,
Section 7 treats the effects of water river discharge on tidal bore
formation.

2. Problem setting

The study of tidal wave propagation in funnel shaped estuaries
is often performed under several simplifying assumptions. The
geometry of real alluvial estuaries in coastal plains can be well-
approximated by an exponentially decreasing width variation and
a flat bathymetry [14,15,6]. This morphology is the natural result
of a morphodynamic equilibrium of the erosion/sedimentation
process. For this reason, we will perform our study on the simpli-
fied case (Fig. 1) of a tide propagating in an idealized convergent
channel of constant depth D0 and an exponentially decreasing
width B(x), varying in the longitudinal direction xwith the law:

B(x) = B0e−x/Lb (1)

where Lb represents the convergence length of the channel. We as-
sume a rectangular cross-section suitable, as a first approximation,
to describe the behavior of a real section with the same area.

It is a common practice in the literature to use quasi-
one-dimensional systems of equations to investigate the large
scale dynamics of long waves propagating in convergent chan-
nels [1,2,16,5,4]. In the case of open channels with exponentially
decreasing cross section areas, the equations assume the following
form:

∂ζ

∂t
+ u

∂ζ

∂x
+ D

∂u
∂x

−
uD
Lb

= 0 (2)

∂u
∂t

+ u
∂u
∂x

+ g
∂ζ

∂x
+ Cf 0

u|u|
D

= 0

where D = ζ + D0 denotes the total water depth, with ζ the
free surface elevation and D0 the still water depth and u stands for
the cross-sectionally averaged flow velocity. The friction term is
modeled by a quadratic law, with Cf 0 the friction coefficient.

As already remarked by others in the literature [1,2,4,13] three
external dimensionless parameters appears to fully control the
system (2). Following the scaling of the equations proposed by
Bonneton et al. [13], these parameters are:

ϵ0 =
A0

D0
, δ0 =

Lw0

Lb
, φ0 =

Cf 0(gD0)1/2

ω0D0
; (3)

where D0, A0 and ω0 form a set of reference external parameters,
respectively the water depth, the amplitude and the angular fre-
quency of the tidal wave. Here ϵ0 represents the standard non-
linearity parameter, δ0 is the convergence ratio, φ0 is a friction
parameter and Lw0 = (gD0)1/2ω−1

0 is the frictionless tidal-wave
length scale.

Field observations reported in [3] show that in tidal bore es-
tuaries the tidal wave nonlinearity is mainly characterized by the
dimensionless parameter

D∗

i = ϵ0φ0/δ0 , (4)

being always one order of magnitude greater than ϵ0.
Both theoretical studies [1] and experimental observations [3]

agree that large values of the dissipation parameter D∗

i produce
great distortion and peaking of the free surface and velocity pro-
files of the tidal wave, leading to flood dominance; characteristics
which correspond to necessary conditions for tidal bore formation
(D∗

i ≥ 1.7 in [3]). However, large values of D∗

i correspond also
to high energy dissipation, leading to tidal damping; unfavorable
to tidal bore formation. For this reason some natural estuaries,
despite having high values of D∗

i , do not display a bore. In order
to evaluate the relative importance of friction in the momentum
balance, several definitions of the friction parameter φ0 have been
introduced in the literature [1,2,17,4]. Although all of these defi-
nitions are analogous from a physical point of view, only the one
introduced by the present authors in [13] allows to investigate sep-
arately the opposite effects of peaking and dissipation taking place
for high values of D∗

i . In this paper we describe the details of the
numerical investigation behind the scaling proposed in [13]. We
will thus explore numerically the space of the external parameters
ϵ0, δ0 and φ0, quantifying which range of values is in favor of tidal
bore formation.

Considering that, for most alluvial estuaries, the convergence
ratio δ0 is close to 2 (as showed in Fig. 2 of [13]), we have chosen to
perform our analysis using a constant value δ0 = 2. Due to such
a simplification, the expression of the dissipation parameter (4)
reduces to: D∗

i = αϵ0φ0 (with α constant). Thus, it is possible to
investigate the separate effects of peaking and dissipation, both
contained in D∗

i , by numerically exploring only the plane of the
dimensionless parameters (φ0, ϵ0). The effects of nonlinear disper-
sion and of the discharge are also investigated, while we leave out
for the moment the influence of bathymetric variations.

3. Numerical model

3.1. Governing equations

For nonlinear long waves, a reasonably general description is
provided by the fully nonlinear weakly dispersive Serre–Green–
Naghdi equations. As already mentioned, this model allows to
simulate the phenomenon in its entirety, including the nonlinear
dispersive effects active on the smaller scales. To the authors’
knowledge, it does not exist so far any mathematical model allow-
ing to account for such effects in quasi-1D setting. The closest work
is the very recent paper of Winckler and Liu [18], who developed a
set of weakly nonlinear Boussinesq equations. This justifies the use
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Fig. 1. Sketch of the idealized geometry of the channel and basic notations.

of a full two-dimensional model. The SGN equations can be recast
as [19,20]:

∂ζ

∂t
+ ∇ ·

(
D u

)
= 0 , (5a)

∂u
∂t

+
(
u · ∇

)
u + g∇ζ + Cf 0

u|u|

D
= ψ , (5b)(

I + T
)
ψ = T

(
g∇ζ − Cf 0

u|u|

D

)
− Q(u) ;

(5c)

where u is the depth averaged velocity vector of horizontal compo-
nent u and transversal one v, ψ characterizes the non-hydrostatic
and dispersive effects, and the linear operators T(·) and Q(·) are the
same defined in [20] and their expressions are given in Appendix A.

It is worth noting that, when applying the scaling proposed
in [13] and recalled in Section 2 to system (5) (details are re-
ported in Appendix A), an additional dimensionless parameter
µ2

= (D0/L0)2 appears into the equations, multiplying all the
dispersive terms (cf. Eq. (17b)). This parameter is responsible for
the fact that the non-hydrostatic effects become negligible when
the characteristic scale of the phenomenon is large, transforming
the original SGN system of equations into the non-conservative
form of the Non-Linear Shallow Water (NLSW) system. For this
reason, dispersion does not influence significantly the large scales
of tidal wave propagation, which can be well described by the
NLSW equations. A direct verification of this is given and discussed
in Section 5.

3.2. Numerical strategy

To solve system (5) we adopt the strategy illustrated in [20].
Given an initial solution, the Serre–Green–Naghdi system is solved
in two independent steps. First, the elliptic equation (5c) is solved
for the non-hydrostatic term ψ. Then, an hyperbolic step is per-
formed for Eqs. (5a)–(5b), evolving the flow variables in time.
This strategy solution has been shown to be very flexible and
robust, producing accurate results with different combinations of
discretization schemes in space and time. For this study, in the
hyperbolic phase a third order MUSCL finite volume scheme has
been used, together with a third order SSP Runge–Kutta method
for the evolution in time. The elliptic phase is solved, instead, with
a classical second order finite element approach. The overall hybrid
FV–FE scheme obtained is thus characterized by a dispersion error
of the same order, or smaller, than those produced by fourth order
finite differencing, providing that at least third order of accuracy
is guaranteed for the hyperbolic component. The interested reader
can refer to [20] for more details.

3.3. Boundary conditions

The choice of the boundary conditions affects the flow field sig-
nificantly [21]. While exact boundary conditions can be generally
imposed in the case of homogeneous hyperbolic problems, this
remains an active research topic when source terms are included
inside the equations. The task becomes even harder working with
dispersivemodels. Therefore, while the fully reflectivewall bound-
ary condition can be obtained by imposing some symmetric con-
ditions stemming from the satisfaction of : u · n = 0 on the wall
line (being n the normal direction to the wall), inflow and outflow
boundaries require more complex treatments (cf. [22–25]).

In this work, the interest in long scale dynamics justifies the use
of the NLSW invariants also when the SGN equations are solved
inside the computational domain [26]. The illustrative results con-
tained in Section 5 show that the effects of this approximation on
the large scale is completely negligible on both coarse and fine
computational meshes.

In practice, the seaward boundary condition is applied by im-
posing in the incoming NLSW Riemann invariant the free surface
given by the sea level tidal oscillation:

ζ (t) = A0 sin
(
2π t
T0

)
. (6)

We consider here the case of semi-diurnal tides with period T0 =

12.41 [h].
On the landward boundary, the outflow condition is set impos-

ing the information of still water (we recall that the river discharge
is neglected at this level) coming from far on the right. However,
the imposition of the homogeneous invariant cannot take into ac-
count the rise of the mean (tidally averaged) water level landward
caused by the friction (cf. [5]), introducing a non-physical behavior
of the solution in the outlet proximity. For this reason, the outflow
boundary conditions has been coupled with an extension of the
computational domain, to reduce the spurious influences on the
solution in the region of study. In practice it has been enlargedup to
x = 6Lb, to further limit non-physical effects due to the boundary
condition.

In order to guarantee the reliability of the results, a sensitivity
study has been performed in comparison with the technique of
boundary imposition applied by [21] and a reference solution com-
puted using a very long computational domain. For the interested
reader the results of such study are reported in Appendix B.

4. Computations setting

Tide propagation up to an estuary is, in nature, partly limited by
an increasing bottom slope and by discharge. Considering that the
effects of both the bathymetric variations and the river discharge
have been, at first, neglected in our simulations, even the weakest
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Table 1
Ratio between the location of tidal bore inception xc and convergence length Lb for
some alluvial estuaries.
Source: Data taken from [3].
Estuaries Lb [km] xc [km] xc/Lb
Gironde/Garonne 43 90 2.09
Hooghly 25 60 2.4
Humber 25 75 3.0
Pungue 17 50 2.94
Qiantang 40 90 2.25
Severn 41 55 1.34

and linear tidal wave would be able to propagate landward and,
being dissipated by only friction, it would reaches non-physical
distances with also possible generation of unnatural bores. For this
reason, and for later use, a characteristic physical length Lc has
been introduced to limit the region in which the tidal signal is
assumed to be physically relevant. In particular, examining real
estuaries data, we observed that tidal bores occur, before reaching
a distance of 3Lb from the estuary mouth, see Table 1. Thus, we
have chosen to limit the region of interest for our simulations to
Lc = 3Lb.

Moreover, tidal bore inception is a continuous process which
takes place as a gradual increase of the free surface slope at the
beginning of the flood phase. The same continuous increase of
steepness is observed in our simulations. A criterion is thus needed
to detect the bore onset, within the domain [0, Lc] just defined.
During the two measurement campaigns on the Garonne river,
Bonneton et al. [3] observed that bore passage was associated to
an increase in the value of the free surface spatial gradient, at
the start of the flood, with at least one order of magnitude (from
O(10−4) in the smooth casewithout tidal bore). For each numerical
simulation we compute, in a post-processing phase, the spatial
slope of the free surface all along the domain, up to Lc , retaining for
eachposition x themaximumvalue in the tidal period. The quantity
Amax has been defined as:

Amax = max
x∈Lc

[
max
t∈T0

(
∂ζ (x, t)

∂x

)]
(7)

and the following criterion to determine tidal bore onset is used:
Amax ≥ 10−3 .

5. Undular tidal bore formation

Preliminary simulations concerning the development of an un-
dular tidal bore into the idealized channel of Fig. 1 are reported
in this section. We consider a strongly nonlinear and weakly dis-
sipative channel of ϵ0 = 0.7 and φ0 = 10. To visualize the re-
sults we consider pointwise plots and distributions of the relevant
quantities along the channel axis. In developed flow conditions,
deviations in the transversal direction have been quantified to be
less than 1.5%.

Fig. 2 shows the time series over one tidal cycle of the computed
free surface elevation, measured at 11 gauges positions along the
channel. The results provided by the SGN model are superposed
to those obtained by using the NLSW model. Differences appear,
instead, focusing on the region of the shock formation. The results
obtained are then reported in Fig. 3 and show the formation pro-
cess of a undular tidal bore. Also in this case, the two models give
identical results in the whole domain except when the shock is
formed (cf. top of Fig. 3). On the discontinuity, in fact, the SGN
model provides an undular bore with local formation of a train of
secondary waves. These waves are characterized by a wavelength
of 50 [m] and a period of 6 [s] (cf. bottom of Fig. 3). However, it can
be remarked that the position of the bore inception, themean bore
jump and its celerity are well-described by the NLSW model. This

Fig. 2. Illustrative result of a tidal propagation into an idealized channel with
the shape described in Section 2, ϵ0 = 0.7, φ0 = 10. Computed free surface
profile, measured at 11 stations along the channel corresponding to x = αLB with
α = 0 : 1/3 : 3. The simulation have been realized using both the NLSW and the
SGN models.

justifies its application for investigations on the large scale estuary
dynamics. Studies concerning the local effects on tidal bores or
flooding problems cannot, instead, avoid the use of a dispersive
model to correctly reproduce the peaks of water height due to the
secondary waves.

Field observations lead Bonneton et al. [3] to consider that the
location of the tidal bore onset is associated with the appearance
of an inflexion point on the tidal wave profile. However, these
authors stress the difficulty to characterize the tidal bore onset on
the river, since this would require a high density of water elevation
measurements over a long distance. By contrast, with our numer-
ical simulations we are able to provide a full set of subsequent
snapshots (cf. Fig. 4), describing the progressive transition from a
tidal wave regime without bore (cf. Figs. 4(a) and 4(b)) to a well-
developed undular tidal bore regime (cf. Figs. 4(g) and 4(h)). The
gradual evolution of the surface profile towards the bore inception
passes by the appearance of an inflexion point at the beginning of
the rising tide.

In the middle and upper part of the estuary, the value of Amax,
used in our tidal bore onset criterion, is registered at the beginning
of the rising tide. As a consequence, the pictures of Fig. 4 allow
to observe the temporal evolution of such quantity as the tide
propagates landward. The values of maxx∈Lc

(
∂ζ

∂x

)
for the eight

pictures of Fig. 4 are, thus, showed in Table 2 for the two NLSW and
SGN model. It is worth to note that the dispersive terms becomes
relevant after the threshold of Amax has been reached, i.e. when
tidal bore occurrence has already been flagged by our criterion.
We can, thus, conclude that tidal bore appearance is completely
determined by the values of the external parameters ϵ0, δ0 and
φ0 and is not influenced by the choice of the model used for the
numerical simulations.

6. Study of tidal bore occurrence

The results of the previous section show that dispersive effects
are not necessary to study the large scales of the propagation and
transformation of the tide. At these scales the NLSW system is a
sufficiently accurate and more efficient model. This is why we will
employ it here to perform the numerical investigation of the space
(φ0, ϵ0) of dimensionless parameters, trying to quantify the favor-
able conditions for bore inception. However, dispersion simula-
tionswill still be used in some cases to provide some quantification
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Fig. 3. Illustrative result of tidal propagation into an idealized channel with the shape described in Section 2, ϵ0 = 0.7, φ0 = 10. Top: computed free surface profile at
different increasing times of the simulation. Bottom-left: free surface signal in space. Bottom-right: free surface signal in time.

Table 2
Values assumed by the quantity maxx∈Lc

(
∂ζ

∂x

)
in the several pictures of Fig. 4 and

for the two NLSW and SGN models. Bold numbers represent values which satisfy
the tidal bore onset criterion: Amax ≥ 10−3 .

NLSW SGN

(a) 7.25 × 10−5 7.25 × 10−5

(b) 1.05 × 10−4 1.05 × 10−4

(c) 1, 74 × 10−4 1, 74 × 10−4

(d) 4.11 × 10−4 4.11 × 10−4

(e) 1.9 × 10−3 1.9 × 10−3

(f) 2.87 × 10−3 1.61 × 10−3

(g) 5.04 × 10−3 3.77 × 10−3

(h) 9.47 × 10−3 7.38 × 10−3

of the local order of magnitude of the non hydrostatic terms. This
quantitative comparison will allow to comfort our hypothesis and
provide further insight into the mechanisms of bore formation.

6.1. Investigation of the plane (φ0, ϵ0)

We have performed 225 simulations of the idealized case of
study defined in Section 2, corresponding to an equivalent num-
ber of estuaries. We recall that the value of convergence ratio is
constant, δ0 = 2, and thus each simulation represents a unique
combination of the parameters ϵ0, φ0, corresponding to precise
conditions of the tidal forcing at the mouth and to specific geo-
metrical and physical properties of the channel. In such a way we

have systematically investigated the plane (φ0, ϵ0), applying the
criterion described in Section 4 in order to detect bore formation.
Fig. 5(left) shows the contour lines of the quantity Amax in the plane
of the parameters (φ0, ϵ0), performed by collecting and linearly
interpolating the simulations’ results. The red color denotes the
region where the bore detection criterion is satisfied, while the
blue one represents cases characterized by a smooth tidal wave so-
lution. Fig. 5(right) will be discussed later on. The results show that
there exists a critical curve ϵc(φ0) that can be traced in this plane,
dividing tidal-bore and no-tidal-bore estuaries. This curve is the
white dashed line traced in Fig. 5(left). Observing the shape of the
isolines in Fig. 5(left), two different behaviors can be distinguished,
depending on the values assumed by the friction parameter
φ0.

The first region is characterized by values of the friction param-
eter in the range 1 < φ0 ≤ ∼20. Here the mechanism of bore
inception appears to be fully controlled by the nonlinear parameter
ϵ0. Fig. 6 shows a comparison between two numerical results com-
puted using two different values of ϵ0, one just above the critical
curve and one just below it (ϵ0 = 0.3 and ϵ0 = 0.225 respectively),
at a constant value of φ0 equal to 13.33. The comparison is made
in terms of the free surface and velocity time series, respectively in
Fig. 6(a) and (b), measured at the location x = Lc . In both figures,
the signals associated to the case at higher ϵ0 are characterized by
a greater distortion at the beginning of the flood phase, leading to
bore formation according to our threshold. The two zooms, dis-
played in Fig. 6(c) and (d), allow to better appreciate the different
time gradients exhibited by the water wave on the time scale of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Computed free surface profile at different increasing times of the simulation, showing the undular bore inception from the formation of an inflexion point of the wave
profile: from top left to bottom right.
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Fig. 5. (Left): Isocurves of the quantity Amax in the plane of the parameters (φ0 , ϵ0), the white dashed line represents the ϵc (φ0) curve, namely the limit for tidal bore
appearance following the criterion Amax ≥ 10−3 . (Right) : Projection of real alluvial estuaries data on the plane (φ0 , ϵ0); with a gray dashed line (- -) we have represented by
hand the transition between the two regimes, inspired by the similar trend in the left picture. The database used to generate the picture can be found in Table 2 of [13], for
brevity and completeness we list here the name and number of the estuaries included in the picture: 1. Chao Phya; 2. Columbia; 3. Conwy; 4. Corantijin; 5. Daly; 6. Delaware;
7. Elbe; 8. Gironde; 9. Hooghly; 10. Humber; 11. Limpopo; 12. Loire; 13. Mae Klong; 14. Maputo; 15. Ord; 16. Pungue; 17. Qiantang; 18. Scheldt; 19. Severn; 20. Tha Chin;
21. Thames. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: [6] for estuaries 1, 4, 11, 13, 14, 18, 20; [1] for 2, 3, 6, 7, 15, 19, 21; [3] for 8, 9, 10, 16, 17; [27] for 5; [28] for 12.

Fig. 6. Time variation of the free surface elevation (a) and the velocity (b) signalsmeasured at x = Lc for a fixed value ofφ0 = 13.33 and the two different values of ϵ0 = 0.225
( ) and ϵ0 = 0.3 ( ). (c) and (d) are two zooms on the water wave profile at the beginning of the flood phase, on the time scale of the tidal bore (around 20 min).
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Fig. 7. The order ofmagnitude of the several dimensionless terms in themomentum equation of system (17)without dispersion; three test sections are presented: at x =
1
3 Lc

(left), x =
2
3 Lc (center) and x = Lc (right): (a) ∂u

∂t , (b)
K
L ϵ0(u · ∇)u, (c) 1

KL δ20∇ζ and (d) K ϵ0φ0
δ0

u|u|

D . Upper and lower peaks on the figure (right) reach values respectively of
30.65 and −28.61.

Fig. 8. The order of magnitude of the several dimensionless terms in the momentum equation of system (17), including the dispersion; two test sections are presented: at
x =

1.02
3 Lc (left) and x =

1.12
3 Lc (center), focusing on the time scale of the bore passage, while the third picture (right) represents, for clearness, a zoom of the central one:

(a) ∂u
∂t , (b)

K
L ϵ0(u · ∇)u, (c) 1

KL δ20∇ζ and (d) K ϵ0φ0
δ0

u|u|

D and (e) µ2Ψ.

the tidal bore (around 20 min). It is also interesting to note that
the free surface profile of Fig. 6(a) does not display a Burger’s like
shock, but rather a knee shape is observed. This ismainly due to the
fact that the nonlinear effect of friction prevails on the advective
one, remaining the dominant nonlinearity for themajor part of the
wave transformation. Fig. 7 displays the relative importance of the
various terms in themomentumequation during a tidal cycle in the
previous case of bore development (ϵ0 = 0.3 and φ0 = 13.33). In
the figures, the time evolution of these quantities is represented
at three equispaced locations along the channel, in particular at
x =

1
3 Lc , x =

2
3 Lc and x = Lc . It emerges that the advective

term remains negligible in the momentum equation and the bore
formation results from a balance between acceleration, friction
and hydrostatic terms. Only in the presence of incipient bore, the
relative importance of the advective term rises up overcoming
the frictional nonlinearity. This behavior can be also recovered
when a dispersive bore development is simulated. For the previous
case of undular bore formation of Section 5, the time variations
of the relative magnitude for the momentum equation’s terms are
compared in Fig. 8. For sake of clarity, data are shown for the small
time of the bore passage at two space locations: just before (left)
and after (center and right) the appearance of the secondarywaves.
It can be seen that, as in the previous case of Fig. 7, the advective
term becomes the relevant nonlinear term on the bore location.
However, in this case, its increase is partially limited by the rise of
the dispersive term in a general context dominated by the balance
between the inertial and the hydrostatic contributions.

For higher values of φ0 (φ0 ≥ ∼20), the isolines of Amax spread
out forming a wider transition region but, more important, display
an almost vertical slope. This implies an increasing role of the
friction parameter in the physical mechanism of bore formation.

In Fig. 9, we show the solutions computed for two cases across
the transition zone (φ0 = 20 and φ0 = 40 respectively), keeping
constant ϵ0 = 0.4 . Once again, we look to the free surface and
velocity time signals to compare the two results, Fig. 9(a) and (b)
respectively. It clearly appears that an increase of the value of the
friction parameter φ0 is directly associated to both potential and
kinetic energy dissipation, leading to more damped profiles. This
process decreases the local nonlinearity of thewavewhich, in turn,
is smeared out, as one can see from the free surface zooms on
the time scale of the bore (Fig. 9(c) and (d)). Moreover, Fig. 9(b)
displays the particular tendency of the tidal current to become
constant during the ebb tide for large values of the friction param-
eter (strongly dissipative estuaries), in agreement with previous
studies (e.g. [1,3]).

We can schematically summarize that the nonlinear parameter
ϵ0 mainly relates to the distortion mechanism which leads to
bore formation, while the friction parameter φ0 mainly relates the
dissipation of the tidal wave, unfavorable to bore generation.

The separation between estuaries displaying or not a tidal
bore, which emerges from our numerical results, is in qualita-
tive agreement with real-estuary observations analyzed in [13].
A list of tidal and geometrical properties for 21 convergent allu-
vial estuaries (8 of them displaying a bore and 13 not) has been
used in [13] to produce Fig. 5(right), reported here for sake of
clarity. In the picture, a gray dashed line dividing tidal-bore and
no-tidal-bore estuaries has been traced by hand, inspired by the
trend of the critical curve emerged in Fig. 5(left). We can notice
that the numerical critical curve ϵc(φ0) and the data-based one
only slightly differ considering the several simplifying modeling
assumptions. In particular, in real alluvial estuaries the general
decrease of depth landward is favorable to bore inception and
this can cause the critical data-based curve (Fig. 2b of [13]) to
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Fig. 9. Time variation of the free surface elevation (a) and the velocity (b) signals measured at x = Lc for a fixed value of ϵ0 = 0.4 and the two different values of φ0 = 20 (
) and φ0 = 40 ( ). (c) and (d) are two zooms on the water wave profile at the beginning of the flood phase, on the time scale of the tidal bore (around 20 min).

be located slightly below with respect to the modeling one on
Fig. 5(left).

From the observations made in the previous paragraph, a close
relation between bore formation and tidal damping emerges. A
standard parameter used in the literature [29,30] to measure the
amplification/damping of the tidal wave during its propagation
along the estuary is the rate of change of the tidal range Tr, defined
in accordance to Ref. [30] as:

δTr =
1
Tr

dTr
dx

. (8)

In the present work we integrate equation (8), from the estuary
mouth to x = Lc (end of our region of study), and we compute, for
each simulation performed, the quantity:

∆Tr =
Tr(Lc) − Tr(0)

Tr(0)
(9)

using the tidal range at the estuary mouth Tr(0) as a scaling factor.
Fig. 10(left) shows, on the same plane (φ0, ϵ0) of Fig. 5, the

contour lines of the computed quantity ∆Tr, obtained by linearly
interpolating the values of each simulation. The black dashed line
is the contour line for ∆Tr = 0, namely the marginal curve for
tidal range amplification, where all the estuaries with unampli-
fied and undamped wave lie. It represents an ideal situation for
which the amplification effect associated to funneling is exactly

balanced by friction. The marginal curve divides the plane into
two regions; estuaries located below are characterized by a tidal
range amplification while estuaries located above are affected by
damping. A simple analytical model, derived by Savenije et al. [29]
in the linearized case, allows to explicitly compute the damping
factor of an estuary as a function of the three external independent
parameters of the estuarine dynamics. According to this model,
Toffolon et al. [2] found that synchronous estuaries (δTr = 0) lie
on a curve, which can be recast in terms of our parameters as:

ϵ0 =
δ0(δ20 + 1)

φ0
. (10)

Using the value of δ0 = 2 in (10), we get the red curve plotted in
Fig. 10(left). A good agreement is observed between the marginal
curve obtained through numerical simulations (black dashed line)
and the one of the analyticalmodel of Savenije (red line), especially
for low values of ϵ0, namely the linear regime.

From Fig. 10(left) it is interesting to note that ϵ0 plays a fun-
damental role also in the damping/amplification process. If we fix
thephysical and geometrical properties Lb,Cf 0,D0, this corresponds
to a specific estuary configuration with φ0 constant in addition to
δ0 = 2. In this context, the variations of ϵ0 can be considered as
associated with neap–spring tide cycles. We can, thus, conclude
that strong tides lead to weaker tidal wave amplification values
and, for particularly strong tides, the wave most likely will be
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Fig. 10. (Left): contour lines of the quantity ∆Tr on the plane (φ0 , ϵ0); the black dashed line (- -) represents the marginal curve resulting from the computations, while the
continuous red one ( ) is the analytical marginal curve of the Savenije model [30]. Hot colors cover the region of amplification of the tidal wave during propagation; cold
colors represent damping. (Right): the computed marginal curve (- -) is superimposed on the Amax contour lines. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

damped. This result is in qualitative agreement with the physical
observationmade in [3] for the Garonne river. Theirmeasurements
showed that, for such estuary always characterized by tidal wave
amplification, minor amplifications were related to higher values
of ϵ0, observed during spring tides.

The superimposition of the computed marginal curve on the
contour lines of the quantity Amax, in Fig. 10(right), shows that
a large part of the red region in the figure, lies in the part of
the plane (φ0, ϵ0) characterized by damping of the tidal range.
This means that, despite a reduction of the local nonlinearity of
the wave, this remains high enough to develop distorted profiles
and to produce bores. We can conclude that, contrary to what is
generally accepted, tidal range amplification along the estuary is
not a necessary condition for tidal bore formation.

7. Influence of river discharge

In the previous sections, we have analyzed tidal wave trans-
formation and tidal bore occurrence in a simplified context in
which freshwater river discharge was neglected. However, it is
well known that tide in estuaries may be significantly affected by
the rate of discharge [16,5]. The effects of river discharge become
much more important moving landward from the mouth of the
estuary and can influence for bore formation. The present section
will provide a qualitative estimation on the effects of discharge,
leaving a full quantitative study for future works.

In the experimental campaigns on the Garonne river, Bonneton
et al. [3] observed that small river discharges Q were favorable
to tidal range amplification and bore occurrence, while significant
freshwater discharges offset the amplification mechanism related
to estuary convergence. Horrevoets et al. [16] described, with an
analytical model, that the influence of river discharge on tidal
damping takes place mainly through friction. Generally speaking,
the tidally averaged free surface elevation along the estuary does
not coincidewith themean sea level, due to the nonlinear frictional
effect on the averagedwater level D̄(x). In practice there is amono-
tone increase of D̄(x) landward, proportional to the river discharge
Q , see [31,5]. Moreover, a damping of the local tidal range Tr(x) has
been pointed out by Bonneton et al. [3], hence the local nonlinear
parameter ϵ(x) = Tr(x)/(2D̄(x)) is a decreasing function of Q . Due
to this damping effect, tidal bores are rarely observed for strong
freshwater river discharges.

For a fixed estuary (fixed δ0 and φ0), the dimensionless parame-
ters governing the flow dynamics are the amplitude of tidal forcing

ϵ0 and the dimensionless intensity of river discharge Q0. The goal
of the present section is to explore the space of parameters (ϵ0,
Q0) in order to find, for an estuary characterized by δ0 = 2 and
φ0 = 18 (values closed to the ones of the Garonne river), a critical
curve ϵc(Q0) for tidal bore development, following the criterion
Amax ≥ 10−3. In order to perform our investigation, we have to
express Q0 as a function of the external variables of the problem.
The scaling analysis proposed in [13] leads to the definition of a
parameter K =

U0D0
A0ω0Lb

(see also Appendix A for details), that has
been measured to be K ∼ 1 in convergent alluvial estuaries [3].
A characteristic velocity scale U0 = ϵ0ω0Lb can, thus, be derived.
Being B0 the width at the estuary mouth (Fig. 1), we finally define:

Q0 =
Q

A0B0Lbω0
. (11)

The river discharge is introduced by the boundary condition al-
ready described in Section 3, through the incoming Riemann in-
variant from far on the right. Fig. 11 shows, for the particular
estuary considered, the effect of an increasing river flow in terms
of normalized free surface elevation and velocity signals at the
position x = Lc along the channel. The simulationswere performed
using ϵ0 = 0.32 and a range of values Q0 ∈ [0, 4.16 × 10−3

],
obtained by scaling the typical values of the Garonne river through
relation (11). In particular, the values Q0 = 4.16 × 10−4 and
Q0 = 4.16 × 10−3 correspond to the low and high characteristic
freshwater dischargesmeasured in the Garonne (respectivelyQ =

150 [m3/s] and Q = 1500 [m3/s]). In Fig. 11(a), we observe that
the dimensionless mean water depth D̄(Lc)/D0 increases with Q0,
from 1.033 with Q0 = 0 to 1.219 with Q0 = 4.16 × 10−3. We
can also measure the damping effect of freshwater river discharge
on the tidal range; the dimensionless value ∆Tr (Lc) (as defined in
(8)) goes from 0.156 with Q0 = 0 (amplified case) to −0.041 with
Q0 = 4.16 × 10−3 (damped case). An important vertical shift
of the velocity curve, in agreement with field observations [16],
can be observed in Fig. 11(b), moving towards the condition of
unidirectional flow. Moreover, it can be noticed that this result
confirms the theoretical predictions set by Horrevoets et al. [16]
concerning the evolution of the phase lag between high water and
high water slack (and at the same time between low water and
lowwater slack). Note that all the effects described are small below
the value of Q0 = 4.16 × 10−4 and the discharge does not affect
the topology of the tidal wave for the river flow values typically
observed in the Garonne river at the end of the summer season.



Please cite this article in press as: A.G. Filippini, et al., Modeling analysis of tidal bore formation in convergent estuaries, European Journal of Mechanics / B Fluids (2018),
https://doi.org/10.1016/j.euromechflu.2018.01.001.

A.G. Filippini et al. / European Journal of Mechanics / B Fluids ( ) – 11

Fig. 11. Time variation of the water depth (a) and velocity (b) signals measured at x = 3Lb for an ideal estuary characterized by ϵ0 = 0.32, φ0 = 18 and increasing values
of freshwater discharge from Q0 = 0 to Q0 = 4.16 × 10−3 (in particular the values have been chosen considering the typical range of values displayed by the Garonne river
and measured by Bonneton et al. [3]). Figure (c) represents a zoom on (a) in the time scale of the bore (around 20 min).

Thus, the parametric analysis performed in Section 2, by neglecting
Q0, can be considered valid in this range of small Q0.

In Fig. 11(c), the zoom on the time scale of the bore displays
the tendency of the free surface profile to become much smoother
as the value of river discharge increases. In order to explore better
this point, we have performed 47 simulations for different combi-
nations of tidal amplitude and river discharge (ϵ0,Q0). The values of
Amax, obtained for all the simulations, have been plotted in Fig. 12.
Note thatwe chose to represent in the y-axis of the figure the prod-
uctQ0ϵ0, rather than simplyQ0, in order to remove the dependence
of Q0 from A0 (11). The figure shows that, in the presence of weak
river discharges, estuarine dynamics is not influenced by Q0 and,
consequently, the effects of discharge can be considered negligible
in the bore formation process. A qualitative critical curve ϵc(Q0) has
been traced by hand (gray dashed line in Fig. 12) according to the
few computations performed and following the criterion Amax ≥

10−3. This trend is in qualitative agreementwith experimental data
for the Garonne river, presented in [13].

8. Conclusions

The two-dimensional Serre–Green–Naghdi systemof equations
has been used in order to simulate the inception of tidal bores
in convergent alluvial estuaries of idealized geometry. Exploiting
the dispersive properties of the model, we were, thus, the first to

reproduce the formation of an undular tidal bore inside a channel,
to the authors’ knowledge. The results obtained have illustrated
that dispersion does not impact the large scale of propagation of
the tide, as it comes also from the scaling analysis of the equa-
tions proposed in Appendix A, and affects the solution only in
the proximity of bore formation. For these reasons, an accurate
description of the free surface profile at large scale can be obtained
via the simpler NLSW system. Under the hypotheses of constant
bathymetry and negligible river discharge, we have thus employed
the NLSW equations to numerically investigate the bore occur-
rence in convergent alluvial estuaries of idealized geometry.

The scaling of the equations shows that estuarine dynamics is
fully controlled by three dimensionless parameters entirely de-
pendent on the estuary geometrical properties and tidal forcing:
the nonlinearity ϵ0, the convergence parameter δ0 and the friction
parameter φ0, defined by (3). Taking a constant value of δ0 = 2,
we have numerically explored the space (φ0, ϵ0). By means of a
bore detection criterion, we have traced the critical line ϵc(φ0)
dividing estuaries into displaying or not a tidal bore. This curve
is in good agreement with real estuaries data, despite the sev-
eral assumptions made, and provides the necessary conditions for
tidal bore formation. These conditions are a result of a complex
equilibrium between nonlinear distortion and tidal range damp-
ing/amplification processes both driven by the dissipation parame-
terD∗

i ∝ϵ0φ0 multiplying the friction, the dominant nonlinear term
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Fig. 12. Circles represent computations performed for a fixed estuary (δ0 = 2 and
φ0 = 18) varying the values of the tidal forcing amplitude A0 and river discharge
Q0; colors represent the intensity of Amax for each computation; with a gray dashed
line we have represented by hand the ϵc (Q0) curve, namely the limit for tidal
bore appearance following the criterion Amax ≥ 10−3 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 13. The computed critical line for bore formation (white dashed line) and the
computed marginal curve of amplification (black dashed line) divide the (φ0 , ϵ0)
plane into four main areas. In the picture, TB stands for tidal-bore estuaries, while
NTB stands for no tidal-bore estuaries; A indicates amplification of the tidal wave
along the estuary, D damping.

for this class of estuaries. The particular shape of ϵc(φ0) shows that,
for low values of φ0 (indicatively 1 < φ0 ≤ ∼20), bore formation
depends almost exclusively on the nonlinear parameter ϵ0, while
being, instead, mainly disciplined by the dissipation, related to the
value of φ0, for φ0 ≥ ∼20.

The critical curve intersects the computed marginal curve of
amplification, dividing the plane into four main areas. Estuaries
will thus experience tidal range amplification or damping, tidal
bore formation or not, depending on which region in the plane
they belong to (see Fig. 13). The existence of a sector characterized
by tidal bore generation and tidal range damping shows that tidal
range amplification along the estuary is not a necessary condition
for tidal bore occurrence, as it is instead commonly assumed in
the literature [32]. This result is also in agreement with field
observations analyzed in [13].

Finally, we have studied the effect of river discharge for estuar-
ies characterized by δ0 = 2 and φ0 = 18 (which are close to the

values displayed by theGironde/Garonne estuary).Wehave shown
that for low Q0 (i.e. Q0 < 4.16 × 10−3), corresponding to the dry
season, the effect of river discharge on tidal wave dynamics and
bore formation can be neglected.

The above findings are based on several simplifying assump-
tions, that have allowed a clear understanding of the bore inception
mechanism. Other effects influencing the spatial location of bore
development have been so far ignored and may arise due to the
variable bathymetry, river banks andmeanders. The consideration
of such effects will require significant attention, but will provide a
more thorough comprehension when approaching the analysis of
real natural estuaries.

Acknowledgments

Experiments presented in this paper were carried out using
the PlaFRIM experimental platform, developed under the INRIA
PlaFRIM development action with support from LABRI and IMB
and other entities: Conseil Régional d’Aquitaine, FeDER, Université
de Bordeaux and CNRS. This work was partially funded by the
TANDEM contract, reference ANR-11-RSNR-0023-01 of the French
Programme Investissements d’Avenir.

Appendix A. Scaling of the SGN equations

In this section we report some details concerning the applica-
tion of the scaling proposed in [13] to the SGN system of equa-
tions (5). The following scaling of the physical variables is thus
applied:

x = L0x′
; y = L0y′

; t =
t ′

ω0
; D = D0D′

; (12)

ζ = A0ζ
′
; u = U0u′.

The governing equations (5a) and (5b), written in dimensionless
form, will thus read (dropping the primes for sake of clarity):

∂ζ

∂t
+

K
L

(
ϵ0 u∇ζ + D∇ · u

)
= 0 , (13a)

∂u
∂t

+
K
L

ϵ0
(
u · ∇

)
u +

1
KL

δ20 ∇ζ + K
ϵ0φ0

δ0

u|u|

D
= ψ . (13b)

where L =
L0
Lb

and K =
U0D0
A0ω0Lb

are functions of the length and
velocity scales of the phenomenon [13] and the scale factor 2πU0

T0
has been used for the non-hydrostatic term ψ.

Considering a flat bathymetry, the linear operators T(w) and
Q(w), applied to a generic vectorw, are:

T(w) = −
1
3D

∇

(
D3

∇ · w
)

, (14a)

Q(w) =
2
3D

∇

[
D3

(
∇w1 · ∇

⊥w2 +
(
∇ · w

)2)]
; (14b)

in which w1 and w2 indicates respectively the first ans second
component of the vector w and ∇

⊥ stays for the normal gradient
operator. Applying the scaling (12) to the two expressions above
and introducing the dimensionless dispersion parameter µ =

D0
L0
,

we can state that T(w) = µ2 T′(w) and Q(w) =
µ2

L0
Q′(w). Eq. (5c),

written in terms of dimensionless variables, then becomes (still
primes are dropped for clarity):(
I + µ2T

)
ψ = µ2T

( 1
KL

δ20 ∇ζ − K
ϵ0φ0

δ0

u|u|

D

)
− µ2Q

(K
L

ϵ0 u
)

. (15)
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Fig. 14. Time evolution profiles of the non-dimensional free surface (left) and velocity (right) measured at x = 2Lb ( ), x = 2.5Lb ( ) and x = 3Lb ( ) for the two test
cases performed with ϵ0 = 0.1 (top) and ϵ0 = 0.7 (bottom). In the two computations φ0 has been set constant and equals to φ0 = 35. Continuous lines represent the results
obtained by using absorbing landward b.c. by means of the homogeneous NLSW invariants at x = 5Lb; while dashed lines were obtained by imposing wall b.c. at x = 8Lb .

Eq. (15) can be rearranged as follows:

ψ = µ2( I + µ2T
)−1

[
T
( 1
KL

δ20 ∇ζ − K
ϵ0φ0

δ0

u|u|

D

)
−Q

(K
L

ϵ0 u
)]

, (16)

showing that ψ = µ2Ψ.
The final form of scaled SGN system will thus read:

∂ζ

∂t
+

K
L

(
ϵ0 u∇ζ + D∇ · u

)
= 0 , (17a)

∂u
∂t

+
K
L

ϵ0
(
u · ∇

)
u +

1
KL

δ20 ∇ζ + K
ϵ0φ0

δ0

u|u|

D
= µ2Ψ , (17b)

Ψ =
(
I + µ2T

)−1
[
T
( 1
KL

δ20 ∇ζ − K
ϵ0φ0

δ0

u|u|

D

)
− Q

(K
L

ϵ0 u
)]

. (17c)

Appendix B. Landward boundary conditions

Imposing correctly the landward boundary condition (b.c.) is
not a trivial operation. Up to the authors knowledge, there is not an
efficient and systematic method to impose an outflow conditions
in the presence of friction and convergence. In this appendix a
sensitivity analysis has been performed in order to quantify the
influence of the inexact b.c. that has been implemented for this
study (cf. Section 3.3). Two tests have been conducted: one for a
low and the other for a high value of the nonlinear parameter ϵ0,

respectively ϵ0 = 0.1 and ϵ0 = 0.7. We compare two solutions:
one computed by setting the outflow b.c. at the location x = 5Lb,
the other, considered as a reference, derived by imposing awall b.c.
at the further distance x = 8Lb, where the tidal wave is assumed to
be completely dissipated. Fig. 14 shows the time evolution profiles
of the non-dimensional free surface and velocity at different po-
sitions along the channel. In order to measure the deviation from
the reference solution we use the L2-norm

∥ζ−ζref ∥L2
∥ζref ∥L2

. At the station
x = 3Lb, the percentage values of the deviation are 3.3% for ζ and
3.98% for u in the case with ϵ0 = 0.1, while being respectively
5.27% and 7.67% in the case with ϵ0 = 0.7.

Toffolon [21] revealed the difficulties of imposing such condi-
tions. He considered two limit cases: the reflecting barrier and the
transparent condition. On the former, a wall boundary condition
was imposed at the end of the channel, which determined a com-
plete reflection of the wave. The latter condition, instead, referred
to a situation where the tidal wave exited from the computational
domain without being deformed or reflected (transparent b.c.).
This condition was implemented by replacing, on the last cells of
the domain, mass and momentum conservation laws with a scalar
advection equation for each conservative variable, characterized
by an advection speed equal to the outgoing eigenvalue. Even
though, the need of considering a longer estuary in order to vanish
the influence of the boundary on the solution, remained.

Fig. 15 shows the comparison with the solution performed by
implementing the transparent boundary condition used in [21].
The percentage deviations from the reference are of the same order
of magnitude as those recovered using our approach and, most
importantly, the two approaches provide identical topologies for
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Fig. 15. Time evolution profiles of the non-dimensional free surface (left) and velocity (right) measured at x = 3Lb , obtained by setting the absorbing homogeneous b.c. (
) and the transparent b.c. of [21] ( ). The red curve ( ) represents the reference solution computed by imposing wall b.c. on a longer domain of L = 8Lb (ϵ0 = 0.7 and

φ0 = 35). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

both the water depth and the velocity. The results of our study are
thus independent from the choice of the method used.
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