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In this paper a detailed analysis of undular bore dynamics in channels of variable
cross-section is presented. Two undular bore regimes, low Froude number (LFN) and
high Froude number (HFN), are simulated with a Serre–Green–Naghdi model, and the
results are compared with the experiments by Treske (1994). We show that contrary
to Favre waves and HFN bores, which are controlled by dispersive non-hydrostatic
mechanisms, LFN bores correspond to a hydrostatic phenomenon. The dispersive-like
properties of the LFN bores is related to wave refraction on the banks in a way similar
to that of edge waves in the near shore. A fully hydrostatic asymptotic model for
these dispersive-like bores is derived and compared to the observations, confirming
our claim.

Key words: channel flow, shallow water flows

1. Introduction
A bore is a propagating transition between two streams. Denoting by 1 the state

ahead of the bore, and by and 2 the state behind it, the two streams are characterized
by different water depths h1 and h2, with h1 < h2. The intensity of two-dimensional
(vertical plane) bores is mainly characterized by the Froude number

Fr=
|u1 − cb|
√

gh1
, (1.1)

where u is the depth averaged velocity and cb the bore celerity. For large Fr the
jump observed corresponds to a turbulent breaking wave. For Fr smaller than
approximately 1.3, the bore transition is smooth and followed by wave trains. The
bore is hence made of a mean jump between two water depths on which secondary
waves are superimposed. This type of bore is usually named an undular bore. Favre
(1935) was the first to describe this phenomenon from laboratory experiments. That is
why undular bores are sometimes referred to as Favre waves. This phenomenon is a
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FIGURE 1. Schematic representation of the cross-section of natural alluvial channels; W
is the bottom channel width, β the bed-slope angle from horizontal, h1 and h2 are the
water depths ahead and behind the bore respectively.

weakly dispersive non-hydrostatic process which can be modelled by Boussinesq-type
equations (e.g. Peregrine 1966). In the mathematical community this dispersive
process is also named dispersive shock. The dynamics of two-dimensional undular
bores has been extensively studied from laboratory experiments (e.g. Favre 1935;
Treske 1994; Gourlay 2001; Soares Frazao & Zech 2002; Chanson 2009), theoretical
(e.g. Lemoine 1948; Benjamin & Lighthill 1954; Johnson 1972; El, Grimshaw &
Smyth 2006) and numerical approaches (e.g. Peregrine 1966; Wei et al. 1995; Soares
Frazao & Zech 2002; Tissier 2011; Kazolea & Ricchiuto 2018; Shi et al. 2018).

However, natural estuary and river channels are non-rectangular and present most
of the time a variable cross-section with a nearly trapezoidal shape and gently
sloping banks (see figure 1). The bore dynamics is then mainly controlled by
three dimensionless parameters among which are the Froude number (1.1), and the
geometrical parameters W/h1 and tan β, where W and β are the characteristic bottom
channel width and bed-slope angle from horizontal respectively. Only a few studies
have been devoted to undular bore dynamics in channels with variable cross-section.
The propagation of undular bores over a trapezoidal cross-section channel, with fixed
parameters β = 1/3 and W/h1 = 7.75, was studied by Treske (1994). He showed that
the secondary wave field is two-dimensional with strong variations in crest height
across the channel section, and then strongly differs from that in rectangular channels.
Treske (1994) identified a transition around Frt = 1.15. For F < Frt, the secondary
wave wavelength in the whole channel is at least two to three times larger than in a
rectangular channel for the same Froude numbers. For F>Frt however the secondary
wave field along the channel axis becomes very similar to Favre waves (rectangular
channels), while long wavelengths are still observed along the banks, leading to a
complex multi-dimensional wave structure. In field observations a similar transition
was described for the first time in long-term high-frequency experiments carried
out in the two main French tidal bore estuaries: the Seine and Gironde/Garonne
estuaries (see Bonneton et al. 2011, 2012, 2015). The authors identified two undular
bore regimes around a transition Froude number Frt of approximately 1.1: the high
Froude number regime (HFN regime) for F>Frt and the low Froude number regime
(LFN regime) for F < Frt. In the HFN regime, the secondary wave field is strongly
multi-dimensional and characterized by a ‘fish-tail’ pattern (see figure 2a). The
wave amplitude is maximum in the mid-channel and decreases toward the banks
(figure 2b). It was shown that the amplitude and wavelength along the river axis
are similar to those of Favre waves in rectangular channels for the same Froude
number. This observation indicates that this HFN regime is most probably controlled
by dispersive non-hydrostatic processes as for the Favre waves. The secondary wave
field in the LFN regime shows a significantly different behaviour. The phase structure
is quasi-one-dimensional (figure 2c), and the wave amplitude is at its maximum on
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FIGURE 2. (Colour online) Illustration of the two undular tidal bore regimes (Garonne
River, Bonneton et al. 2015). (a,b) High Froude number regime (Fr = 1.27); (c,d) low
Froude number regime (Fr= 1.08). (a) Two-dimensional (2-D) phase structure; (c) quasi-
1-D phase structure. Black line, elevation in the mid-channel; magenta line, elevation close
to the bank.

the banks and minimum in the mid-channel (figure 2d). The transition between HFN
and LFN regimes is marked by an abrupt decrease of the secondary wave steepness
(Bonneton et al. 2015), and by a considerable increase in wavelength. The low wave
steepness of the LFN makes visual observations of undular tidal bores very difficult.
This is why tidal bore occurrence in worldwide estuaries is certainly underestimated
(Bonneton et al. 2011a, 2015).

In this paper, a detailed analysis of undular bore dynamics in channels of variable
cross-section is presented. The two undular bore regimes (LFN and HFN) are
simulated with a Serre–Green–Naghdi model, and the results are compared with
Treske’s experiments. We show that contrary to Favre waves and HFN bores, which
are controlled by dispersive non-hydrostatic mechanisms, the LFN bores correspond
to an hydrostatic phenomenon. The dispersive-like properties of the LFN bores are
related to wave refraction on the banks in a way similar to those of edge waves in
the near shore. A fully hydrostatic asymptotic model for these dispersive-like bores
(i.e. LFN bores) is derived and compared to the observations, confirming our claim.

2. Dispersive wave modelling
2.1. Mathematical and numerical model

The generation of undular bores is in general related to non-hydrostatic propagation
and thus it requires the use of dispersive equations to be correctly modelled. In this
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work we use a phase-enhanced fully nonlinear and weakly dispersive Serre–Green–
Naghdi model which can be recast as (Filippini, Kazolea & Ricchiuto 2016, 2017a):

∂ζ

∂t
+∇ · (hu)= 0,

∂(hu)
∂t
+∇ · (hu⊗ u)+ gh∇ζ = φ,

 (2.1)

where ζ denotes the free surface elevation, h the water depth and u the depth averaged
horizontal velocity vector of u = (u, v). The term φ represents the non-hydrostatic
effects, and can be shown to be the solution of an auxiliary elliptic partial differential
equation which can be written as

φ + αT(φ)= T(gh∇ζ )−Q(u), (2.2)

where α is a tuning parameter used to enhance the linear frequency dispersion and
shoaling characteristics of the model (Chazel, Lannes & Marche 2011). The value
α = 1.159 provides relative phase errors below 1 % for reduced wavenumbers up
to ≈π. The definitions of the differential operators T(ω) and Q(ω) are reported
for completeness in appendix A, following Lannes & Marche (2015), Filippini
et al. (2016, 2017a). For φ = 0 the system reduces to the hydrostatic, hyperbolic
Saint–Venant/shallow water model.

The coupled system (2.1)–(2.2) is solved numerically on unstructured grids using
the two step hybrid strategy proposed in Filippini et al. (2016, 2017a). In this
approach the first step consists of recovering the non-hydrostatic correction by
solving the elliptic problem (2.2) using a finite element method based on the
symmetric variational form exploiting the self-adjoint character of the operator T
(see Alvarez-Samaniego & Lannes (2008), Filippini et al. (2016) for details). Once
φ is known, the evolutionary partial differential equations (2.1) are solved by means
of a third-order finite volume method, combined with a third-order strong stability
preserving Runge–Kutta or with a fourth-order Adams–Bashforth/Adams–Moulton
predictor corrector method to march in time. The resulting algorithm has been shown
to have discrete linear dispersion properties comparable to those of a fourth-order
finite difference discretization (Filippini et al. 2016; Filippini, Kazolea & Ricchiuto
2017b).

Finally, wave breaking is modelled by means of the shock capturing approach
also used in Tonelli & Petti (2009), Shi et al. (2012), Tissier et al. (2012), Kazolea,
Delis & Synolakis (2014), Filippini et al. (2016): the non-hydrostatic correction φ is
set to zero in regions flagged as breaking. This allows the formation of dissipative
bores/shocks across which the total energy is dissipated, with a rate very close to
the one encountered in the surf region (Bonneton 2007). The flagging is performed
by means of the physical criteria suggested in Kazolea et al. (2014), which make
use of the norm of the gradient of the time derivative of the free surface ζ , and
of a limiting of the breaking region based on a minimum local Froude number of
approximately 1.3 as proposed in Tissier et al. (2012).

2.2. Undular bores simulations in straight-walled channels
As a preliminary step toward the main application of the paper, we consider the
simulation of undular bores in channels with a rectangular section. Even though
our numerical model has been thoroughly validated in the original references, this
straight-walled case provides a simple benchmark involving undular bores. The
resulting simulations will lead to clarification of some interesting aspects related to
this type of benchmark, which have never been explicitly addressed.
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FIGURE 3. Bore in a channel of rectangular section. (a) Main physical parameters,
(b) typical undular bore free surface.

We first reproduce the three undular bore configurations proposed in Wei et al.
(1995), and then provide a more thorough study of the dependence of bore
characteristics on the Froude number.

A sketch of the problem with the notation for the most relevant physical parameters
is reported in figure 3(a), while the typical undular bore free surface is displayed in
figure 3(b). The initial condition used in the numerical simulations is defined by a
mean hydrostatic bore satisfying the Rankine–Hugoniot relations associated with the
Saint–Venant system. Denoting the states ahead and behind the bore with subscripts 1
and 2, these conditions read:

u1 − cb =−

(
gh2

2h1
(h1 + h2)

)1/2

,

u2 − cb =−

(
gh1

2h2
(h1 + h2)

)1/2

.

 (2.3)

For all the computations of this section we have used a rectangular computational
domain of dimensions [100 × 2] m2, and a regularization of the initial discontinuity
defined as

h(x, y, t= 0)=
h2 − h1

2
tanh((x− x0)/lt)+ h2,

u(x, y, t= 0)=
u2 − u1

2
tanh((x− x0)/lt)+ u2

v(x, y, t= 0)= 0,

 (2.4)

where x0 = 95 m and lt = 0.5 m. Periodic boundary conditions are used in the y
direction, and for all cases we have used u1 = 0 m s−1 and h1 = 0.16 m. Concerning
the discretization, the reference grid sizes in the longitudinal and transversal axis are
δx= 0.04 m and δy= 0.5 m. These sizes have been chosen to have at least twenty grid
points per wavelength in all computations. We have numerically verified that for these
values the flow characteristics, including the wavelengths measured, are converged.

We start by considering the three configurations discussed in § 5.2 of Wei et al.
(1995), defined by the value of the nonlinearity ratio ε = (h2 − h1)/h1. The values
used are ε1= 0.1, ε2= 0.2, and ε3= 0.3. We can use relations (2.3) and the definition
of Froude number (1.1) to show that the computations correspond to Fr1 ≈ 1.07,
Fr2 ≈ 1.15 and Fr3 ≈ 1.22.
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FIGURE 4. Undular bore propagation (from Wei et al. 1995). (a) ε1 = 0.1, (b) ε2 = 0.2,
(c) ε3 = 0.3. Continuous line: numerical results obtained here. Dashed line: reference
fully nonlinear/fully dispersive potential solution (from Wei et al. (1995) reproduced with
permission of the authors).

As in the reference we visualize the ratio ζ/h1 as a function of x′ = x/h1, at
three different values of the non-dimensional time t′ = t/

√
h1/g: t′ = 50, t′ = 60

and t′ = 70. We report in figure 4 a comparison of our numerical results with the
fully nonlinear potential flow solutions reported in Wei et al. (1995), used here as
a reference. We can see the increase in the amplitude of the secondary waves as
nonlinearity increases. The fully nonlinear and weakly dispersive model used here
does an excellent job in capturing the amplitudes of these waves. We also remark
that the wavelengths provided by our model match very well those of the reference,
despite its weakly dispersive character. The small underestimation of the amplitude
for the most nonlinear case is consistent with the results obtained in Wei et al. (1995)
with a different fully nonlinear Boussinesq model.

With the same set-up, we perform an investigation similar to the one done
experimentally by Favre (1935) and Treske (1994) in rectangular flumes. Several
simulations are performed for values of the Froude number from 1.01 to 1.30. The
quantities compared to the experimental data are (cf. figure 3a) the wave heights
Amax and Amin, the amplitude 2A = Amax − Amin and the wavelength. The resulting
comparisons between our simulations, the experimental data from Favre (1935) and
Treske (1994), and the well-known theory by Lemoine (1948), are reported in figure 5.

The water level elevations Amax and Amin fit very well the data of Favre (1935)
and Treske (1994). The same can be said for the amplitudes, reported in figure 5(b).
The figure also shows that an excellent estimation of the amplitude can be obtained
from the theory by Lemoine (1948). Concerning the wavelengths, in figure 5(c) we
can see that our simulations provide a good prediction of the magnitudes, as well
as of the wavelength reduction for increasing Fr. The agreement is however less
striking than for the water elevation, the numerical results providing a wavelength
overestimation. This is somewhat surprising as the values of the reduced wavenumber
of the secondary waves is of the order of 0.6–1.0, which is well within the validity
of our model. Note however, the same discrepancy has been observed by other
authors in simulations obtained with models similar to ours, as in the PhD thesis
of Tissier (2011), as well as in full Navier–Stokes simulations, as in Putra et al.
(2019). This mismatch is most probably due to the fact that the wavelength after
the initial bore formation increases with time. This dependency is clearly measurable
in our simulations, as shown in figure 6 for Froude numbers similar to those of
figure 4. This dependence is not explicitly accounted for in the experiments by Favre
(1935) and Treske (1994). Despite this discrepancy, the comparisons of figures 4
and 5 are extremely satisfactory in terms of validation of our model. A more detailed
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FIGURE 5. Undular bore propagation. (a) Water heights, (b) amplitude, (c) wavelength. +:
data of Treske (1994), ×: Favre (1935),E: numerical simulations, ——: Lemoine (1948)
theory.
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FIGURE 6. Undular bore propagation: evolution of the measured wavelength with the
propagation time. (a) Fr= 1.15, (b) Fr= 1.2, (c) Fr= 1.22.

investigation of the dynamics of undular bores of Green–Naghdi models is beyond
the scope of this paper, and is left for future work.

3. Bore propagation in trapezoidal channels

The secondary wave field in rectangular channels simulated in the previous section
is a dispersive non-hydrostatic phenomenon (a dispersive shock). As discussed in
the introduction, the bore dynamics drastically change when topographic variations
along the channel cross-section are present, as shown by Treske (1994) in laboratory
experiments, and by Bonneton et al. (2015) in field observations. To show that we
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FIGURE 7. Bore propagation in a trapezoidal open channel. (a) Cross view; (b) lateral
view. Definition of variables: W; width of the channel, h; water depth, d0; still water depth
on the axis, β; angle of the banks, U; section-averaged velocity in the axis direction, cb;
bore celerity.

can model this dynamics with a weakly dispersive Serre–Green–Naghdi approach, in
this section we reproduce numerically the experiments by Treske. As we will see,
the simulations reproduce the transition between the high Froude number (HFN) and
low Froude number (LFN) regimes discussed in the introduction. The comparison
between simulations and experimental data provides some further insight into the
differences between these two regimes, leading to the conclusion that the LFN
secondary waves are not related to the same dispersive non-hydrostatic process
generating the HFN/Favre waves.

3.1. Set-up
The geometry of the channel is represented by the bathymetry sketched in figure 7.
Width W, angle β and water depth h1 are the same as in Treske (1994): W = 1.24 m,
tan β = 1/3, h1 = 0.16 m.

The jump conditions required to initialize the computations are obtained from a
section-integrated version of the shallow water equations (Chanson 2004):

∂A
∂t
+
∂Q
∂x
= 0,

∂Q
∂t
+
∂

∂x

(
Q2

A
+K

)
= 0,

 (3.1)

where, as in figure 5(a), d0 is a constant still water depth, h0 = d0 + ζ (x, t) is the
depth on the channel axis associated with a wave height ζ constant along the section,
A=Wh0+h2

0/tanβ is the wet section and Q=UA is the total flow rate through the wet
section. For the configuration of figure 5(a), following Chanson (2004), the effective
hydrostatic pressure K can be easily shown to be

K = g
Wh2

0

2
+ g

h3
0

3 tan β
. (3.2)

The Rankine–Hugoniot relations become in this case:

U1 − cb =−

(
g

A2

A1

K2 −K1

A2 − A1

)1/2

,

U2 − cb =−

(
g

A1

A2

K2 −K1

A2 − A1

)1/2

,

 (3.3)
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(a) (b)

(c) (d)

Fr = 1.05 Fr = 1.10

Fr = 1.17 Fr = 1.20

FIGURE 8. Snapshots of the simulated undular bores for different Froude numbers.

reducing to (2.3) for tan β→∞. We have performed simulations for different values
of the Froude number defined as

Fr=
|U1 − cb|√

gh1

, h1 :=
A1

∂hA(h1)
=

W tan β + h1

W tan β + 2h1
h1. (3.4)

The computational domain is a rectangle of dimensions [100× 1.5] m2 corresponding
to half of the channel width. Symmetry/reflecting boundary conditions are imposed on
the axis. The initial solution is defined by the following regularization of (3.3):

h(x, y, t= 0)=
h2 − h1

2
tanh

(
x− x0

lt

)
+ h2 − b(y),

u(x, y, t= 0)=
U2 −U1

2
tanh

(
x− x0

lt

)
+U2,

v(x, y, t= 0)= 0,


(3.5)

where x0 = 95 m and lt = 0.5 m, and having assumed velocities to have a uniform
value across the section. Grid sizes of δx=0.04 m and δy=0.05 m, respectively in the
x and y directions, are used. These values guarantee at least approximately 20 points
per wavelength for the shortest waves simulated, and has been verified to provide
results which are practically mesh converged.

3.2. Numerical results
Simulations have been performed for a range of Froude numbers from 1.02 to 1.275, a
range sufficiently large to study the LFN–HFN transition, while remaining well below
the second transition to a fully breaking bore along the channel axis. Snapshots of
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FIGURE 9. Free surface profiles for different Froude numbers. Continuous line: axis.
Dash-dot: banks.

the water levels obtained for four representative values of Fr are reported in figure 8.
Compared to the visualization of figure 3, these pictures show the complexity of the
wave dynamics induced by the interaction with the sloping banks. The low Froude
results look somewhat more similar to the results obtained for a rectangular section,
with a wave phase structure uniform along the section. As Fr increases the wave field
becomes highly two-dimensional.
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GN simulations
Treske data

FIGURE 10. Wavelength and water level of undular bores in a channel with trapezoidal
section. (a) Water elevation (axis), (b) water elevation (banks), (c) wavelength,
(d) steepness (axis). ×: Data of Treske (1994) axis, +: data of Treske (1994) banks,u:
simulated values on the channel axis,p: simulated values on the banks, — —: Lemoine
(1948) theory.

To further investigate this point, we have reported in figure 9 the free surface
elevation along the channel axis and close to the banks. These figures show clearly
the transition between the LFN regime, with uniform phase structure along the section
and a single dominant wavelength (figure 9a,b), to the HFN regime in which two
types of waves interact (figure 9c–e). The interaction between these two leads to
the two-dimensional wave fields of the bottom pictures in figure 8. As in the field
observations by Bonneton et al. (2015), and as discussed in the introduction, the LFN
regime is characterized by amplitudes being higher on the banks than on the axis,
while the HFN bores have larger amplitudes on the channel axis. We underline in
particular the striking resemblance of the HFN bore of figure 9(e) and of the LFN
wave of figure 9(a), with the bores measured in the Garonne river and reported
respectively in figures 2(b) and 2(d).

To provide a more quantitative assessment of the numerical results, we have post
processed the time series of the water elevation for all the simulated values of Fr to
obtain the amplitude of the first peak and trough, the wavelength and the steepness.
The results are compared to the experimental data by Treske (1994) in figure 10.

The numerical peak and trough amplitude, denoted by Amax and Amin respectively,
are compared to the experiments in figures 10(a) for the channel axis, and 10(b) for
the sloping banks. On the axis both experiments and simulations show a quasi-linear
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increase in the water elevations with the Froude number, with no clear transition. On
the contrary, on the sloping banks we observe a clear transition, taking place for a
value Frt ≈ 1.15. Before Frt, the peak elevations increase more rapidly than on the
axis, in agreement with the LFN signals observed in figures 9(a) and 2(d). In the
LFN regime, the trough amplitudes Amin remain roughly constant. After the transition,
on the sloping banks the increase of peak amplitude with Fr becomes very weak,
while the trough amplitude starts increasing. This leads to the HFN regime in which
the amplitudes on the axis are more important than those on the sloping banks, as
already observed in figures 9(e) and 2(b) for the field measurements. The agreement
between simulations and experiment is very good, with the exception of a small
advance on the onset of the transition, and of a slight underestimation of the slow
growth of the peaks after Frt, which can be seen in figure 10(b). This mismatch is
most likely related to the parametrization of the wave breaking closure for which we
have used standard values from Kazolea et al. (2014), and did not try to optimize.

The transition between the LFN and HFN bores can be seen very clearly in the
wavelength and steepness distributions, reported in figures 10(c) and 10(d) respectively.
For these quantities the agreement between simulations and experimental data is
excellent. We can see that the HFN regime is characterized by wavelengths on the
axis very close to those observed in straight channels. This is made more clear by
reporting in the figure the values computed by means of the theory by Lemoine
(1948). The curve provides a very good fit of the wavelengths observed in the
simulations and in the experiments. This suggests that non-hydrostatic dispersive
effects are the dominating ones on the channel axis, as in Favre waves. On the
sloping banks some other phenomenon is active, as the wavelengths observed are
approximately three times larger than on the axis. This leads to wave signals like
those reported in figures 9(c) and 9(d). Below Frt both on the axis and on the sloping
banks wavelengths have values three or four times larger than those predicted by the
theory of Lemoine (1948). In the LFN regime, the trend with the Froude number is
the same as observed on the banks for HFN waves. The distribution of the steepness
(Amax − Amin)/2λ on the channel axis, reported for completeness in figure 10(d), also
shows the transition between the LFN and HFN waves. Very similar results with field
data from the Garonne and Seine river field measurements can be found in Bonneton
et al. (2015). It should be remarked that the separation between the two regimes is
not abrupt. Although the difference is very clear when looking at Froude numbers
sufficiently above and below Frt, when approaching this value things are less definite,
as one can start guessing from figure 9(c) for example. So one should speak rather of
a narrow transition region, roughly centred on Ftt = 1.15 for the geometry considered
here.

Our results show clearly that the LFN–HFN transition can be described satisfactorily
by simulations based on weakly dispersive Serre–Green–Naghdi models, with a very
good overall agreement between simulations and experiments. The main question
remaining open is the origin of the LFN bores. The objective of the remainder of
this paper is to propose a dispersive-like mechanism for these waves.

4. Dispersive-like mechanism for small Froude numbers
4.1. Motivation

This section discusses one of the main results of this paper. We will show that the
dispersion characteristics of LFN waves can be modelled by a fully hydrostatic section-
averaged model, obtained starting from the shallow water equations. The dispersive
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1.00 1.05 1.10 1.15 1.20 1.25

30

25

20

15

10

5

Fr

¬/
h 1

(a) (b)

FIGURE 11. Numerical verification: Treske experiments reproduced with shallow water
simulations. (a) Free surface for Fr= 1.15. (b) Comparison of computed wavelengths (q)
with the data from the experiment by Treske (+: banks, ×: axis).

effects embedded in this model are purely hydrostatic and related to the refraction
along the banks. For this reason we speak of a dispersive-like process.

Note that waves with characteristics somewhat similar to those observed here
are the well-known edge waves for which there exist a certain number of analytical
solutions obtained from the full potential equations. The interested reader may consult
for example the works of Ursell (1952), Miles (1989) and more recently Johnson
(2007), and references therein.

As in the case of edge waves, we claim that the main physical mechanism
acting here is the refraction induced by the sloping banks. To give a theoretical
characterization of the LFN waves here we claim that we can start from an
appropriately scaled linearized shallow water approximation. Indeed, dispersive
propagation has been shown to arise for standard linear waves in heterogeneous
media (Quezada de Luna & Ketcheson 2013; Ketcheson & Quezada de Luna 2015).
For the application considered here, our intuition is related to two observations. First,
the LFN waves are much longer than the standard Favre waves. Second, in the HFN
regime these waves can still be observed in trapezoidal channels on the sloping
banks where the non-hydrostatic effects are known to be less relevant. To verify this
intuition, we propose a first experiment consisting of repeating the simulations of § 3
with the shallow water equations. The results are summarized in figure 11. The left
picture in the figure shows the free surface profile obtained numerically for Fr= 1.05.
The presence of undulations in the propagation is clearly visible. Also, these features
do not disappear as the mesh is refined. The right picture in the figure shows the
comparison of the wavelengths measured in the shallow water simulations with the
data of Treske. The hydrostatic model clearly reproduces the LFN waves. Also note
that the wavelengths measured are the same on the banks and on the axis, as one
would expect.

To complete the study, in the following we discuss an asymptotic and section-
averaged approximation of the linear hydrostatic shallow water equations exhibiting
geometrical dispersion. To obtain this result we make the hypothesis that a fast
wave refraction phenomenon is present in the transversal direction. The time scale
associated with this phenomenon, denoted by τy is thus assumed to be much smaller
than the time scale in the propagation direction, denoted by τx. This hypothesis implies
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y = 0

y = y0y = -y0

Lx

x

x

z

z
d0

d(y)

b(y)

(a) (b)

FIGURE 12. Main geometrical notation for the asymptotic analysis. (a) Cross-section;
(b) side view.

the existence of a small parameter defined as the ratio between the transversal and
longitudinal time scales or, equivalently, as the reference length ratio

δ :=
τy

τx
≈

Ly

Lx
� 1. (4.1)

The correctness of our asymptotic approximation is first verified against numerical
computations of monochromatic waves, and finally applied to the experiments of
Treske by means of an analysis similar to the one performed in Lemoine (1948).

4.2. Hydrostatic section-averaged approximation
Consider the geometrical configuration depicted in figure 12. We are interested in
deriving a linear approximate model for the evolution of the section-averaged free
surface, where the section-averaging operator is denoted by an overline, and defined
by

(·)=
1

2y0

∫ y0

−y0

(·) dy. (4.2)

An exception to the above notation is the section-averaged depth at still water, which
we denote by h0. Using the notation of figure 12, we have that

h0 = d= d0 − b. (4.3)

We also denote by C2
0=gh0 the square celerity corresponding to h0. Let now Ly be the

half-channel breadth at the still water level, a a reference wave height and ε = a/h0
the standard nonlinearity parameter. We consider the following dimensionless form of
the main physical variables (cf. figure 12):

∂x′ =
∂x
Lx
, ∂y′ =

∂y
Ly
,

b′ =
b
h0
, ζ ′ =

ζ

a
, d′ =

d
h0
,

t′ =
C0

Lx
t, u′ =

u
εC0

, v′ =
v

εC0
.


(4.4)

In the above equations we recall that u and v denote the components of the depth-
averaged flow speed for which the dimensional scaling by εC0 is a classical choice
(see e.g. Dingemans 1997; Lannes 2013). The quantity y0, required for the evaluation
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Dispersive and dispersive-like bores in channels with gently sloping banks 609

of the section average, is the actual time-/space-dependent half-breadth corresponding
to the local position of the water line. This means that

y0 = Ly +

∫ t

0
v

∣∣∣∣
y=y0

, dt→ y′0 = 1+
ε

δ
∆y, ∆y :=

∫ t′

0
v′
∣∣∣∣

y′=y′0

dt′. (4.5)

We now consider the nonlinear shallow water equations in dimensionless form

∂tζ + ∂x((d+ εζ )u)+
1
δ
∂y((d+ εζ )v)= 0,

∂tu+ εu∂xu+
ε

δ
v∂yu+ ∂xζ = 0,

∂tv + εu∂xv +
ε

δ
v∂yv +

1
δ
∂yζ = 0.


(4.6)

Note that the primes have been dropped to simplify the notation. For simplicity we
assume that the flow is fully symmetric with respect to the channel centreline y= 0.
On the banks, the equations satisfy the boundary conditions

± y= y0 +
ε

δ
∆y⇒ (d+ εζ )v = 0, (d+ εζ )u= 0, d+ εζ = 0. (4.7)

The condition on (d+ εζ )v also applies to channels with vertical side walls.
We now pass to a fully linear regime ε→ 0. Equation (4.5) can be used to simplify

the domain definition in the transversal direction which is now y∈ [−1, 1]. This leads
to a simplification of the section-averaging operator which becomes

(·)=
1
2

∫ 1

−1
(·) dy. (4.8)

The linearized model equations read

∂tζ + d∂xu+
1
δ
∂y(dv)= 0,

∂tu+ ∂xζ = 0,

∂tv +
1
δ
∂yζ = 0,

y=±1→ dv = 0,


(4.9)

where the last expression is a linear non-dimensional boundary condition, still valid
for both banks and vertical side walls.

The boundary condition in (4.9) can be readily used to derive a section-averaged
wave equation by taking the average of the first equation in (4.9):

∂tζ + d∂xu= 0
∂tu+ ∂xζ = 0

}
⇒ ∂ttζ − d∂xxζ = 0. (4.10)

Our objective is to obtain a closed form of the above equation for the evolution
in space and time of ζ . To this end we invoke hypothesis (4.1), and we introduce
asymptotic expansions of all the variables in terms of the small parameter δ:

ζ = ζ0 + δζ1 + δ
2ζ2 + · · · ,

u= u0 + δu1 + δ
2u2 + · · · ,

v = v0 + δv1 + δ
2v2 + · · · .

 (4.11)
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These expansions are substituted in (4.9), and terms of equal powers in δ are equated.
This results in a system of partial differential relations/equations for the coefficients in
the development. This system can be closed by applying iteratively the three following
steps:

(i) ∂y(dvn+1)=−(∂tζn + d∂xun), with dvn+1 = 0 for y=±1;
(ii) ∂tun =−∂xζn, ∀ n;

(iii) ∂yζn+1 =−∂tvn.

To complete the procedure, we need a starting condition as well as a way of
closing the integration along y required in step (iii) (for step (i) the boundary
condition provides this closure).

The starting condition is obtained by observing that ∂y(dv0) = 0 with dv0 = 0 on
both sides of the domain. This implies v0 = 0 which is used as initial value in (i)
and (iii).

Concerning step (iii), the closure used here is based on the explicit computation of
a primitive function Zn+1 such that ∂yZn+1 =−∂tvn. This means that

ζn+1 = Zn+1 + F(x, t). (4.12)

Note that in general Zn+1= Zn+1(x, y, t). We express the integration ‘constant’ F using
section-averaged values: F= ζ n+1 − Zn+1. This gives the closure for step (iii):

ζn+1 = ζ n+1 + Zn+1 − Zn+1. (4.13)

Applying this procedure we obtain the following order results.

Order 0
v0 = 0,

ζ0 = ζ 0(x, t).

}
(4.14)

Order 1

v1 =−
1+ y

d
∂tζ 0 −

D
d
∂xu0, D=

∫ y

−1
d(s) ds,

ζ1 = ζ 1(x, t).

 (4.15)

Order 2

v2 =−
1+ y

d
∂tζ 1 −

D
d
∂xu1, D=

∫ y

−1
d(s)∂s,

ζ2 = ζ 2(x, t)+ (κ(y)− κ)∂xxζ 0, κ(y)=
∫ y

−1

1+ s−D(s)
d(s)

ds.

 (4.16)

Order 3

v3 =−
1
d

∫ y

−1
(∂tη2 + d∂xu2)∂s,

ζ3 = ζ 3(x, t)+ (κ(y)− κ)∂xxζ 1, κ(y)=
∫ y

−1

1+ s−D(s)
d(s)

ds.

 (4.17)
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We do not proceed further as the above solutions provide an approximation which
is exact within O(δ4). This is the typical order retained for weakly dispersive models
such as e.g. the Serre–Green–Naghdi model used in this paper. Collecting all the
orders, we have

ζ = ζ 0 + δζ 1 + δ
2(ζ 2 + (κ(y)− κ)∂xxζ 0)+ δ

3(ζ 3 + (κ(y)− κ)∂xxζ 1)+O(δ4). (4.18)

Using the relations ζ = ζ0 + δζ1 +O(δ2) and ζ 0 + δζ 1 + δ
2ζ 2 + δ

3ζ 3 = ζ +O(δ4), we
deduce the following asymptotic expansion for the free surface:

ζ = ζ + δ2(κ(y)− κ)∂xxζ +O(δ4). (4.19)

We can now use this expansion in the section-averaged wave equation (4.10) to
obtain, within an O(δ4) error, the following section-averaged dispersive approximation:

∂ttζ − ∂xxζ − δ
2χ∂xxxxζ = 0. (4.20)

The coefficient χ is a geometrical dispersion coefficient defined by

χ = d(y)κ(y)− d κ, (4.21)

with the expression for κ(y) provided both in (4.16) and (4.17). We stress that this
dispersive perturbation is only related to the geometrical shape of the channel section,
and to the initial hypothesis that δ� 1. We recall that this hypothesis implies that the
transversal time/length scale, related to the wave refraction, is much smaller than the
time/length scale in the main propagation direction.

By means of standard Fourier transform, we can easily obtain the dispersion relation
verified by solutions of (4.20), which reads in dimensional form

ω2
= k2C2

0(1− χ(kLy)
2), (4.22)

with k the wavenumber.

4.3. Numerical verification of the expansion for monochromatic waves
Our first objective is to verify the asymptotic approximation obtained. This is not a
completely trivial task, as we do not have any analytical reference to compare to. To
perform this verification, we compare the dispersion characteristics of the asymptotic
model to those obtained numerically on fine meshes with the code described in § 2.1
in the shallow water limit.

Setting ζ = a sin(kx − ωt) we can deduce for a given channel a y-dependent
boundary condition from (4.19). This is used as an inlet condition in the code. To
avoid the impact of the treatment of the wet–dry interface, in the computations the
bathymetry is modified by introducing vertical lateral walls, as depicted in figure 13.
Note that, as remarked several times, this configuration is also compatible with the
boundary condition used in the asymptotic development. The computations are started
from a flat free surface, and the inlet boundary condition is propagated numerically
in the channel. The numerical solution obtained is then averaged over the section
and the resulting signal analysed to measure the dispersion relation provided by the
simulations. Note that these results embed full nonlinearity and a full approximation
of the transverse propagation. For this reason they are considered as a good reference
against which the theoretical relation (4.22) can be tested.
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d0

Î0

d(y)

b(y)

FIGURE 13. Channel geometry used for the numerical verification.
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FIGURE 14. Verification of the asymptotic analysis: trapezoidal (a,b) and triangular (c,d)
section. (a,c) Celerity. (b,d) Phase. ∗: shallow water code; ——: new asymptotic theory;
– – –: linear phase for d(y)= d; — · —: linear phase for d(y)= d0.

The resulting comparisons are reported in figure 14 for trapezoidal and triangular
channels in terms of non-dimensional celerity and phase. The figure highlights two
things. First, a dispersive process is indeed present in the shallow water results.
Secondly, for long waves, namely kLy 6 5–6, the asymptotic approximation provides
an excellent prediction of the physical dispersion relation. This confirms the soundness
of the asymptotic development, and implicitly confirms the geometrical origin and
hydrostatic nature of the dispersive behaviour observed. For this reason we speak here
of dispersive-like waves, because actual physical non-hydrostatic/dispersive effects are
not the origin of these waves.

Concerning the deviation observed for higher wavenumbers for the triangular shape
may be related to the effects neglected in the asymptotic development (e.g. some
geometrical nonlinearity to account for higher bank slopes).

4.4. Application to LFN bores
We propose here a method to predict the wavelength observed in the LFN regime in
the spirit of Lemoine (1948). Using the linearized dispersive model derived in the
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FIGURE 15. Theoretical wavelengths compared to numerical and experimental data.
(a) Shallow water simulations; (b) Serre–Green–Naghdi simulations. ×: data of Treske
(1994) axis, +: data of Treske (1994) banks, u: Serre–Green–Naghdi simulations axis,
p: Serre–Green–Naghdi simulations banks,q: shallow water simulations, — —: (Lemoine
1948) theory, ——: new asymptotic theory.

previous sections, we compute theoretical wavelengths by equating the bore speed
obtained from the jump conditions (3.3) with the celerity in (4.22):

C2
0(1− χ(kLy)

2)= g
A1

A2

K2 −K1

A2 − A1
. (4.23)

For a given Froude number, the above equation can be readily solved for the
wavelength λ = 2π/k. The resulting wavelength distribution with respect to the
Froude number is plotted in figure 15 against both the data by Treske, and the
shallow water (a) and Serre–Green–Naghdi (b) simulations.

The results clearly shows that our theoretical analysis fully captures the nature of
the LFN waves. They confirm that the low Froude waves observed in the experimental
setting by Treske (1994), and those of the field measurements by Bonneton et al.
(2015) have an entirely different nature from the so called Favre waves. The latter are
associated with fully non-hydrostatic dispersion, while LFN bores are mainly related
to the coupling of geometrical refraction in the transversal direction and hydrostatic
wave propagation.

5. Conclusions and outlook
In this paper we have proposed a detailed analysis of undular bore dynamics

in channels of variable cross-section. By means of a weakly dispersive Serre–
Green–Naghdi numerical model we have successfully reproduced the two undular
bore regimes, a low Froude number (LFN) and a high Froude number (HFN) one,
observed both in the experiments by Treske (1994) and in Bonneton et al. (2015)
in field measurements in the Garonne and Seine rivers. In the HFN regime two
families of waves are observed. On the channel axis there are short waves with
characteristics similar to those of the well-known Favre waves. These are associated
with non-hydrostatic dispersive effects. On the sloping banks, longer waves are
observed, clearly not generated by the same phenomenon. The interaction between
these two leads to a complex two-dimensional wave phase structure. In the LFN
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regime, only the long waves are observed in the whole channel. This gives a
quasi-one-dimensional wave phase structure, with larger amplitudes on the banks.
A dispersive-like mechanism related to geometrical refraction on the banks has been
proposed as the phenomenon responsible for the LFN waves. The claim has been
first verified numerically, showing that these waves can be reproduced with shallow
water simulations. Then we have shown that, under the hypothesis that the time
scale associated with refraction in the transversal direction is much smaller than the
time scale associated with wave propagation, the section averaged free surface level
verifies a linear dispersive wave equation. The corresponding dispersion relation has
been used to compute theoretical wavelengths for the secondary waves which fit
very accurately the wavelengths observed experimentally and numerically in the LFN
regime.

This study clarifies the main mechanism active in the LFN regime. However, it
remains to understand what the mechanisms are leading the transition between LFN
and HFN waves. It will also be interesting to understand the dependence of the
LFN waves on the geometrical parameters of the channel. Preliminary investigations
have shown that wavelengths in the LFN regime decrease as the slope of the banks
β increases, and when the channel width W (cf. figure 5a) increases. The same
parameters have a small impact in the HFN regime. A detailed study of these issues,
as well as a numerical and theoretical analysis of realistic configurations such as
those studied in Bonneton et al. (2015) are currently ongoing.
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Appendix A. Differential operators defining the non-hydrostatic correction

The differential operators appearing in (2.2) can be recast as

T(ω) = −
1
3
∇

(
h3
∇ ·

(ω
h

))
−

h2

2

(
∇ ·

(ω
h

))
∇b,

+
1
2
∇

(
h2
∇b ·

(ω
h

))
+ h

(
∇b ·

(ω
h

))
∇b, (A 1)

Q(ω) = 2
3∇(h

3(∇ω1 · ∇
⊥ω2 + (∇ ·ω)

2)),

+ h3(∇ω1 · ∇
⊥ω2 + (∇ ·ω)

2)∇b,
+

1
2∇(h

2(ω · (ω · ∇)∇b))+ h(ω · (ω · ∇)∇b)∇b, (A 2)

where b represents the bathymetry, ω1 and ω2 denote the first and second components
of the vector ω and ∇⊥ denotes the normal to the gradient operator.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

ri
a,

 o
n 

15
 M

ay
 2

01
9 

at
 0

8:
48

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
28

7

https://www.plafrim.fr/
https://www.plafrim.fr/
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.287


Dispersive and dispersive-like bores in channels with gently sloping banks 615

REFERENCES

ALVAREZ-SAMANIEGO, B. & LANNES, D. 2008 A Nash–Moser theorem for singular evolution
equations. Application to the Serre and Green–Naghdi equations. Indiana Univ. Math. J. 57
(1), 97–131.

BENJAMIN, T. B. & LIGHTHILL, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A
224 (1159), 448–460.

BONNETON, P. 2007 Modelling of periodic wave transformation in the inner surf zone. Ocean Engng
34 (10), 1459–1471.

BONNETON, P., BONNETON, N., PARISOT, J.-P. & CASTELLE, B. 2015 Tidal bore dynamics in
funnel-shaped estuaries. J. Geophys. Res. Oceans 120 (2), 923–941.

BONNETON, N., BONNETON, P., PARISOT, J.-P., SOTTOLICHIO, A. & DETANDT, G. 2012 Tidal bore
and Mascaret – example of Garonne and Seine Rivers. C. R. Geosci. 344, 508–515.

BONNETON, P., DE LOOCK, J. V., PARISOT, J.-P., BONNETON, N., SOTTOLICHIO, A., DETANDT,
G., CASTELLE, B., MARIEU, V. & POCHON, N. 2011 On the occurrence of tidal bores – the
Garonne River case. J. Coast. Res. 64, 1462–1466.

BONNETON, P., PARISOT, J.-P., BONNETON, N., SOTTOLICHIO, A., CASTELLE, B., MARIEU, V.,
POCHON, N. & DE LOOCK, V. J. 2011 Large amplitude undular tidal bore propagation in the
Garonne River, France. In Proceedings of the 21st ISOPE Conference, pp. 870–874. ISOPE.

CHANSON, H. 2004 Hydraulics of Open Channel Flow, 2nd edn. Elsevier.
CHANSON, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of

experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191–210.
CHAZEL, F., LANNES, D. & MARCHE, F. 2011 Numerical simulation of strongly nonlinear and

dispersive waves using a Green–Naghdi model. J. Sci. Comput. 48 (3), 105–116.
DINGEMANS, M. W. 1997 Water Wave Propagation Over Uneven Bottoms: Linear Wave Propagation.

World Scientific.
EL, G. A., GRIMSHAW, R. H. J. & SMYTH, N. F. 2006 Unsteady undular bores in fully nonlinear

shallow-water theory. Phys. Fluids 18 (2), 027104.
FAVRE, H. 1935 Etude théorique et expérimentale des ondes de translation dans les canaux découverts.

Dunod.
FILIPPINI, A. G., KAZOLEA, M. & RICCHIUTO, M. 2016 A flexible genuinely nonlinear approach for

nonlinear wave propagation, breaking and run-up. J. Comput. Phys. 310 (Suppl. C), 381–417.
FILIPPINI, A. G., KAZOLEA, M. & RICCHIUTO, M. 2017a A flexible 2D nonlinear approach for

nonlinear wave propagation, breaking and run up. In Proceedings of the Twenty-seventh (2017)
International Ocean and Polar Engineering Conference (ISOPE), San Francisco, CA, United
States, pp. 1323–1331. ISOPE.

FILIPPINI, A. G., KAZOLEA, M. & RICCHIUTO, M. 2017b Hybrid finite-volume/finite-element
simulations of fully-nonlinear/weakly dispersive wave propagation, breaking, and runup on
unstructured grids. In SIAM Conference on Mathematical and Computational Issues in the
Geosciences, Erlangen, Germany. SIAM.

GOURLAY, T. P. 2001 The supercritical bore produced by a high-speed ship in a channel. J. Fluid
Mech. 434, 399–409.

JOHNSON, R. S. 1972 Shallow water waves on a viscous fluid – the Undular Bore. Phys. Fluids
15 (10), 1693–1699.

JOHNSON, R. S. 2007 Edge waves: theories past and present. Phil. Trans. R. Soc. Lond. A 365
(1858), 2359–2376.

KAZOLEA, M., DELIS, A. I. & SYNOLAKIS, C. E. 2014 Numerical treatment of wave breaking on
unstructured finite volume approximations for extended Boussinesq-type equations. J. Comput.
Phys. 271 (Suppl. C), 281–305.

KAZOLEA, M. & RICCHIUTO, M. 2018 On wave breaking for Boussinesq-type models. Ocean Model.
123, 16–39.

KETCHESON, D. & QUEZADA DE LUNA, M. 2015 Diffractons: solitary waves created by diffraction
in periodic media. Multiscale Model. Simul. 13 (1), 440–458.

LANNES, D. 2013 The Water Waves Problem. Mathematical Analysis and Asymptotics, Mathematical
Surveys and Monographs. Americal Mathematical Society.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

ri
a,

 o
n 

15
 M

ay
 2

01
9 

at
 0

8:
48

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
28

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.287


616 R. Chassagne, A. G. Filippini, M. Ricchiuto and P. Bonneton

LANNES, D. & MARCHE, F. 2015 A new class of fully nonlinear and weakly dispersive Green–Naghdi
models for efficient 2D simulations. J. Comput. Phys. 282, 238–268.

LEMOINE, R. 1948 Notules hydrauliques. Sur les ondes positives de translation dans les canaux et
sur le ressaut ondulé de faible amplitude. La Houille Blanche 2, 183–186.

MILES, J. 1989 Edge waves on a gently sloping beach. J. Fluid Mech. 199, 125–131.
PEREGRINE, D. H. 1966 Calculations of the development of an undular bore. J. Fluid Mech. 25

(02), 321.
PUTRA, Y. S., BEAUDOIN, A., ROUSSEAUX, G., THOMAS, L. & HUBERSON, S. 2019 2D numerical

contributions for the study of non-cohesive sediment transport beneath tidal bores. C. R. Mèc.
347 (2), 166–180.

QUEZADA DE LUNA, M. & KETCHESON, D. 2013 Two-dimensional wave propagation in layered
periodic media. SIAM J. Appl. Math. 74 (6), 1852–1869.

SHI, F., KIRBY, J. T., HARRIS, J. C., GEIMAN, J. D. & GRILLI, S. T. 2012 A high-order adaptive
time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation.
Ocean Model. 43–44, 36–51.

SHI, F., MALEJ, M., SMITH, J. M. & KIRBY, J. T. 2018 Breaking of ship bores in a Boussinesq-type
ship-wake model. Coast. Engng 132, 1–12.

SOARES FRAZAO, S. & ZECH, Y. 2002 Undular bores and secondary waves – experiments and
hybrid finite-volume modelling. J. Hydraul Res. 40 (1), 33–43.

TISSIER, M. 2011 Etude numérique de la transformation des vagues en zone littorale, de la zone
de levée aux zones de surf et de jet de rive. PhD thesis, University of Bordeaux 1.

TISSIER, M., BONNETON, P., MARCHE, F., CHAZEL, F. & LANNES, D. 2012 A new approach to
handle wave breaking in fully non-linear Boussinesq models. Coast. Engng 67 (Suppl. C),
54–66.

TONELLI, M. & PETTI, M. 2009 Hybrid finite-volume finite-difference scheme for 2DH improved
Boussinesq equations. Coast. Engng 56, 609–620.

TRESKE, A. 1994 Undular bores (favre-waves) in open channels – experimental studies. J. Hydraul.
Res. 32 (3), 355–370.

URSELL, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 79–97.
WEI, G., KIRBY, J. T., GRILLI, S. T. & SUBRAMANYA, R. 1995 A fully nonlinear Boussinesq

model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

ri
a,

 o
n 

15
 M

ay
 2

01
9 

at
 0

8:
48

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
28

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.287

	Dispersive and dispersive-like bores in channels with sloping banks
	Introduction
	Dispersive wave modelling
	Mathematical and numerical model
	Undular bores simulations in straight-walled channels

	Bore propagation in trapezoidal channels
	Set-up
	Numerical results

	Dispersive-like mechanism for small Froude numbers
	Motivation
	Hydrostatic section-averaged approximation
	Numerical verification of the expansion for monochromatic waves
	Application to LFN bores

	Conclusions and outlook
	Acknowledgements
	Appendix A. Differential operators defining the non-hydrostatic correction
	References


