Conference "Oceanography and Mathematics", ENS, January 26-28

Modelling of wave-induced nearshore circulation

Philippe Bonneton

EPOC, Univ. Bordeaux I, CNRS

Nearshore dynamics

©The COMET Program

Longshore current

Rip currents and vortices

Energy spectrum of cross-shore velocity

I - Introduction

Modeling strategies

Long wave modeling:

Barthélémy, E. (LEGI, Grenoble), Cienfuegos, R. (PUC, Chile), Lannes, D. (ENS, Paris), Marche, F. (I3M, Montpellier)

Wave-current coupling:

Bruneau, N. (EPOC, Bordeaux), Castelle, B. (EPOC, Bordeaux) Pedreros, R. (BRGM, Orléans)

Research Programs:

- Surf zone hydrodynamics (IDAO/INSU, CNRS),
- MODLIT (RELIEFS/INSU, CNRS)
- MathOcean and MISEEVA (ANR)
- ECORS (SHOM)

I – Introduction

- II Wave-induced currents and creation of vorticity due to dissipating (breaking) waves
- **III Wave energy dissipation modeling**
- **IV Conclusions and perspectives**

The flow is separated into mean and wave components:

2DH theory

Classical 2DH theory:

Longuet-Higgins (1964), Phillips (1977)

$$\frac{\partial \bar{h}}{\partial t} + \frac{\partial \bar{M}_{j}}{\partial x_{j}} = 0$$

$$\frac{\partial \bar{M}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left((\bar{M}_{i}\bar{M}_{j})/\bar{h} \right) + g\bar{h}\frac{\partial \bar{\zeta}}{\partial x_{i}} = -\frac{\partial S_{ij}}{\partial x_{j}}$$

$$\bar{M}_{i} = \overline{\int_{-d}^{\zeta} v_{i} \, dz} = \bar{h}U_{i} + \tilde{M}_{i}$$
ss: $S_{ij} = \overline{\int_{-d}^{\zeta} (\mathcal{P}\delta_{ij} + \rho\tilde{u}_{i}\tilde{u}_{j}) \, dz} - \frac{1}{2}\rho g\bar{h}^{2}\delta_{ij} - \rho\frac{\tilde{M}_{i}\tilde{M}_{j}}{\bar{h}}$

radiation stress:

Smith (2006)

$$\frac{\partial A}{\partial t} + \frac{\partial}{\partial x_j} \left(A(c_{gj} + U_j) \right) = -\frac{D_{b_m}}{\sigma}$$

$$A = E/\sigma \qquad \qquad \tilde{M}_i = Ak_i$$

$$\begin{aligned} \frac{\partial \bar{h}}{\partial t} + \nabla .(\bar{h}\mathbf{U}) &= -\nabla .\tilde{\mathbf{M}} \\ \frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U}.\nabla)\mathbf{U} + g\nabla \bar{\zeta} &= \mathcal{D}\mathbf{e}_k + \frac{\tilde{\mathbf{M}}}{\bar{h}} \wedge (\nabla \wedge \mathbf{U}) - \nabla \tilde{J} \\ \tilde{J} &= E \frac{k}{\sinh(2k\bar{h})} \qquad \mathcal{D} = \frac{D_{b_m}}{\bar{h}c_{\phi}} \end{aligned}$$

2DH theory

Vorticity equation

$$\frac{\partial \omega^m}{\partial t} + \nabla \cdot \left(\omega^m (\mathbf{U} + \frac{\tilde{\mathbf{M}}}{\bar{h}}) \right) = \nabla \mathcal{D} \wedge (\mathbf{e}_k)$$

(see also Bühler, 2000)

Bruneau N. (PhD 2008) ⇒ coupling of MARS 2D (IFREMER) and SWAN (TU Delft)

applications

Biscarosse Beach 2007

applications

applications

applications

Bruneau, Bonneton, Castelle and Pedreros (2008)

I – Introduction

II – Wave-induced currents and creation of vorticity due to dissipating (breaking) waves

III – Wave energy dissipation modeling

IV – Conclusions and perspectives

Long wave modeling

 $\mu \le 0.01$

Green Naghdi (1976) equations

$$\partial_t \zeta + \nabla \cdot (h\mathbf{v}) = 0$$

 $\partial_t \mathbf{v} + \varepsilon (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla \zeta = \mu \frac{\mathbf{S}}{h} + O(\mu^2)$

$$\begin{split} \mathbf{S} &= \frac{\epsilon}{3} \nabla [h^3 ((\mathbf{v} \cdot \nabla) (\nabla \cdot \mathbf{v}) - (\nabla \cdot \mathbf{v})^2)] \\ &+ \frac{1}{3} \nabla (h^3 \nabla \cdot \partial_t \mathbf{v}) + \frac{1}{2} [\nabla (h^2 \nabla d \cdot \partial_t \mathbf{v}) + h^2 \nabla d \nabla \cdot \partial_t \mathbf{v}] - h \nabla d \nabla d \cdot \partial_t \mathbf{v} \\ &+ \frac{\epsilon}{2} [\nabla (h^2 (\mathbf{v} \cdot \nabla)^2 d) + h^2 ((\mathbf{v} \cdot \nabla) (\nabla \cdot \mathbf{v}) - (\nabla \cdot \mathbf{v})^2) \nabla d] - h ((\mathbf{v} \cdot \nabla)^2 d) \nabla d \end{split}$$

Green Naghdi equations represent the appropriate model to describe nonlinear shallow water wave propagation in the nearshore and wave oscillations at the shoreline. (see Lannes et Bonneton (Phys. Fluids, 2009)) How can we model the wave energy dissipation at wave fronts?

Cienfuegos, Barthélémy et Bonneton. (2005, 2009)

$$egin{aligned} \partial_t \zeta +
abla \cdot (h \mathbf{v}) &= & D_h \ \partial_t \mathbf{v} + arepsilon (\mathbf{v} \cdot
abla) \mathbf{v} +
abla \zeta &= & \mu rac{\mathbf{S}}{h} + rac{1}{h} D_{hu} \end{aligned}$$

$$D_{h} = \frac{\partial}{\partial x} \left(\nu_{h} \frac{\partial h}{\partial x} \right) \qquad D_{hu} = \frac{\partial}{\partial x} \left(\nu_{hu} \frac{\partial \Phi u}{\partial x} \right)$$

- Classical parametrization (Kennedy et al (2000)): $D_h = 0$

- Dutykh and Dias (2007):

quasi-potential flow with a weak vortical component $\Rightarrow D_h$

Green Naghdi equations

Cienfuegos, Barthélémy et Bonneton. (2005, 2009)

 $h_0=0.40m a_0=0.06m T_0=2.00s a_0./h_0=0.16 kh_0=0.37 slope=1/35 dx=0.04m dt=0.02s$

Inner surf and swash zones ⇒ Saint venant equations

Shock wave

Wave front and shock wave

Do weak solutions of the Saint Venant equations can reproduce non-linear wave transformation and energy dissipation in the surf zone ?

One-way wave propagation on a flat bottom

2D shock-capturing finite-volume codes

SURF_SV

Mac-Cormack TVD scheme, 2nd order, gently sloping beach Vincent, Caltagirone, Bonneton (2001)

■ SURF_WB

Positivity preserving high order VFRoe solver, well-balance « hydrostatic Reconstruction Method » (*Audusse et al. (2005)*)

Marche, Bonneton, Fabrie, Seguin (2007), Marche and Berthon (2008)

Numerical simulations

Comparison between shock-capturing numerical simulations (SURF_SV) and laboratory experiments

Comparison between shock-capturing numerical simulations (SURF_SV) and laboratory experiments

Comparison with field data

Bonneton et al (2004)

Truc Vert Beach 2001

- Offshore wave conditions: $\theta \approx 0^{\circ}$, Hs=3 m, Ts=12 s
- Maximum surf zone width: 500 m

Numerical simulations

Numerical simulations

Comparison with field data

Sea-swell frequencies: $f \in [0.05, 0.2 \text{ Hz}]$

Infragravity frequencies: $f \in [0.004, 0.05 \text{ Hz}]$

Comparison between observed (solid line) and predicted (dashed line) sea surface elevation density spectra at sensors P1-5; t=th

1D cross-shore mean flow equations

periodic waves

$$\frac{\partial \bar{h}}{\partial t} + \frac{\partial \bar{h}\bar{u}}{\partial x} = -\frac{\partial \overline{\tilde{\zeta}\tilde{u}}}{\partial x}$$
$$\frac{\partial \bar{u}}{\partial t} + \bar{u}\frac{\partial \bar{u}}{\partial x} + g\frac{\partial \bar{\zeta}}{\partial x} = \mathcal{D} - \frac{\partial \tilde{J}}{\partial x}$$

$$\mathcal{D} = \frac{g}{4c_b T} \frac{(h_2 - h_1)^3}{h_2 h_1}$$
$$\tilde{J} = \frac{1}{2} \overline{\tilde{u}^2}$$

$$\frac{\partial \bar{\zeta}}{\partial x} = \frac{1}{g} \left(\mathcal{D} - \frac{\partial \frac{1}{2} \overline{u^2}}{\partial x} \right)$$

Bonneton (2007)

Shock wave

2D mean flow equations

$$\begin{aligned} \frac{\partial \bar{h}}{\partial t} + \nabla .(\bar{h}\bar{\mathbf{u}}) &= -\nabla .\tilde{M}\\ \frac{\partial \bar{\mathbf{u}}}{\partial t} + (\bar{\mathbf{u}}.\nabla)\bar{\mathbf{u}} + g\nabla \bar{\zeta} &= \mathcal{D}\mathbf{e}_k - \nabla \tilde{J} - \overline{\tilde{\omega}(\tilde{\mathbf{u}}\wedge\mathbf{e}_z)} \end{aligned}$$

$$\frac{\partial \bar{\omega}}{\partial t} + \nabla \left(\bar{\omega} \bar{\mathbf{u}} + \overline{\tilde{\omega}} \tilde{\mathbf{u}} \right) = \nabla \mathcal{D} \wedge \mathbf{e}_k$$

$$\mathcal{D} = \frac{g}{4c_b T} \frac{(h_2 - h_1)^3}{h_2 h_1}$$

Shock wave

Wave-induced circulation

High-order well-balanced shock-capturing methods

SURF_WB model

Marche et Bonneton (2006)

- longshore non-uniformity of wave breaking (wave energy dissipation)
 generates vertical vorticity (see also Peregrine (1999) and Bühler (2000))
- wave energy dissipation in the inner surf zone is well reproduced by the shock-wave solutions of the Saint Venant equations
- vorticity equation for wave-induced currents (without ad hoc parametrization):

$$\frac{\partial \bar{\omega}}{\partial t} + \nabla \left(\bar{\omega} \bar{\mathbf{u}} + \overline{\tilde{\omega}} \bar{\tilde{\mathbf{u}}} \right) = \nabla \mathcal{D} \wedge \mathbf{e}_k \qquad \qquad \mathcal{D} = \frac{g}{4c_b T} \frac{(h_2 - h_1)^3}{h_2 h_1}$$

- high-order well-balanced shock capturing models (e.g. SURF_WB) are required to accurately compute wave-induced vorticity
- Green Naghdi extension of shock-capturing Saint Venant approaches

Thank you for your attention

Shock wave

Conditions de saut et dissipation d'énergie

 $\mathbf{RWR} \Rightarrow D_b = 0 \qquad \frac{\partial \mathcal{E}}{\partial t} + \frac{\partial \mathcal{F}}{\partial x} = -\frac{1}{2}\rho f_r |u|^3 \qquad \mathcal{F} = \rho h u \left(\frac{1}{2}u^2 + g(h-d)\right)$ $\mathbf{shock} \Rightarrow D_b = -[\mathcal{F}] + c_b [\mathcal{E}] = \frac{g}{4}(h_2 - h_1)^3 \left(\frac{g(h_2 + h_1)}{2h_1 h_2}\right)^{\frac{1}{2}} \qquad \text{(Stoker (1957))}$

