

Dynamique des ondes longues et processus dispersifs, en milieu littoral et estuarien

Philippe Bonneton EPOC/METHYS, CNRS, Bordeaux Univ.

tsunami

ressaut de marée (mascaret)

$$d_0$$
 , A_0 , λ_0

$$\frac{T_0}{\lambda_0/\sqrt{gd_0}} = f(A_0/d_0, d_0/\lambda_0)$$

$$\varepsilon_0 = \frac{A_0}{d_0} \qquad \mu_0 = \left(\frac{d_0}{\lambda_0}\right)^2$$

ondes longues : $\mu_0 << 1$

 \rightarrow tsunamis, marées, ondes infragravitaires, ondes de crue, ...

ondes longues se propageant en milieu littoral et estuarien

fortes nonlinéarités → dispersion

Tissier, Bonneton et al., JCR2011

Formation et dynamique des chocs dispersifs

Introduction

Tsunamis

Sumatra 2004 tsunami reaching the coast of Thailand

references:

- Grue et al. 2008
- Madsen et al. 2008

http://www.kohjumonline.com/anders.html

Tsunamis

21st November 2016, Sunaoshi River in Tagajo city, Japan (earthquake 7.4)

21st November 2016, Sunaoshi River in Tagajo city, Japan (earthquake 7.4)

Impact on marine structures and buildings

Tsunamis, Arikawa et al. 2013

Tidal bore

Introduction

Tidal bore

Gironde estuary, Saint Pardon, Dordogne

https://vimeo.com/106090912, Jean-Marc Chauvet, Septembre 2014

Sediment transport and erosion

Tidal Bore, Bonneton et al. 2015

wind waves $(T_0 \approx 10 \text{ s}) \implies \text{infragravity waves} (T_0 \approx 1 \text{ min})$

Costa Rica (video: Bonneton, P. 2012)

Introduction

Infragravity-wave

Urumea River – San Sebastian

Dynamique des ondes longues et processus dispersifs,

en milieu littoral et estuarien

- 1. Introduction
- 2. Modèles d'onde longue
 - notions sur les effets dispersifs
 - équations de Serre / Green-Naghdi
 - applications : simulations numériques
- 3. Distorsion des ondes longues et formation de chocs
- 4. Dynamique des ressauts de marée et mascarets

Physical Oceanography

- → Bonneton, N., Castelle, B., J-P., Sottolichio, A. (EPOC, Bordeaux)
- → Frappart, F. (OMP, Toulouse)
- \rightarrow Martins K. (Bath Univ.)
- \rightarrow Tissier, M. (TU Delft)

□ Long wave modeling

- \rightarrow Lannes, D. (IMB, Bordeaux)
- → Ricchuito, M., Arpaia, L., Filippini, A. (INRIA, Bordeaux)
- → Marche, F. (IMAG, Montpellier)
- → Cienfuegos, R. (CIGIDEN, Chile), Barthélémy E. (LEGI, Grenoble)

2. <u>Modèles d'onde longue</u>

- notions sur les effets dispersifs
- équations de Serre / Green-Naghdi
- applications : simulations numériques

Equations d'Euler irrotationnelles avec surface libre

champ d'onde 2D sur fond plat $(d(x) = d_0)$

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \qquad z \in [-d_0, \zeta]$$
$$\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_0} \frac{\partial P}{\partial x}$$
$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} = -g - \frac{1}{\rho_0} \frac{\partial P}{\partial z}$$

$$P(z) = P_{atm} \qquad z = \zeta$$
$$\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} = w \qquad z = \zeta$$
$$w = 0 \qquad z = -d_0$$

Equations d'Euler irrotationnelles avec surface libre

Adimensionnalisation des variables

$$\begin{aligned} x &= \lambda_0 x', \quad z = d_0 z', \quad t = \frac{\lambda_0}{\sqrt{gd_0}} t', \\ \zeta &= A_0 \zeta', \quad \Phi = \frac{A_0}{d_0} \lambda_0 \sqrt{gd_0} \Phi', \quad P = \rho_0 gd_0 P'. \end{aligned}$$

Equations d'Euler irrotationnelles avec surface libre

$$\mu \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \qquad z \in [-1, \epsilon \zeta]$$
$$\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} = 0$$
$$\epsilon \frac{\partial u}{\partial t} + \epsilon^2 u \frac{\partial u}{\partial x} + \frac{\epsilon^2}{\mu} w \frac{\partial u}{\partial z} = -\frac{\partial P}{\partial x}$$
$$\epsilon \frac{\partial w}{\partial t} + \epsilon^2 u \frac{\partial w}{\partial x} + \frac{\epsilon^2}{\mu} w \frac{\partial w}{\partial z} = -1 - \frac{\partial P}{\partial z}$$

$$P(z) = P_{atm} \qquad z = \epsilon\zeta$$
$$\frac{\partial \zeta}{\partial t} + \epsilon u \frac{\partial \zeta}{\partial x} = \frac{1}{\mu} w \qquad z = \epsilon\zeta$$
$$w = 0 \qquad z = -1$$

Notions sur les effets dispersifs

Linéarisation des équations

Onde élémentaire :

 c_ϕ est une fonction décroissante de k (croissante de λ)

Notions sur les effets dispersifs

$$c_{\phi} = \left(rac{g}{k} anh(kd_0)
ight)^{1/2}$$

 c_ϕ est une fonction croissante de λ

Notions sur les effets dispersifs

$$c_{\phi} = \left(rac{g}{k} anh(kd_0)
ight)^{1/2}$$

• $kd_0 \gg 1$: eau profonde ($\mu_0 \gg 1$)

$$c_{\phi} = \left(rac{g}{k}
ight)^{1/2} = \left(rac{g\lambda}{2\pi}
ight)^{1/2}$$

• $kd_0 \ll 1$: eau peu profonde $(\mu_0 \ll 1)$

$$egin{array}{rcl} c_{\phi} &=& \left(gd_{0}
ight)^{1/2}\left(1-rac{(kd_{0})^{2}}{6}
ight)+O((kd_{0})^{4})\ c_{\phi} &=& 1-rac{\mu_{0}k^{2}}{6}+O(\mu_{0}^{2}) \end{array}$$

Equations faiblement dispersives : $\mu_0 \ll 1$

et entièrement nonlinéaires : $\epsilon_0 = O(1)$

intégration suivant la verticale

$$\int_{-1}^{\epsilon\zeta} \left(\mu \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) dz = 0$$
$$\int_{-1}^{\epsilon\zeta} \left(\epsilon \frac{\partial u}{\partial t} + \epsilon^2 u \frac{\partial u}{\partial x} + \frac{\epsilon^2}{\mu} w \frac{\partial u}{\partial z} + \frac{\partial P}{\partial x}\right) dz = 0$$
$$\frac{\partial \zeta}{\partial t} + \frac{\partial h U}{\partial x} = 0$$
$$\epsilon \frac{\partial U}{\partial t} + \epsilon^2 U \frac{\partial U}{\partial x} + \frac{\epsilon^2}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon\zeta} (u^2 - U^2) dz\right) = -\frac{1}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon\zeta} P dz\right)$$
$$ou U = \frac{1}{h} \left(\int_{-1}^{\epsilon\zeta} u dz\right)$$

$$\epsilon \frac{\partial w}{\partial t} + \epsilon^2 u \frac{\partial w}{\partial x} + \frac{\epsilon^2}{\mu} w \frac{\partial w}{\partial z} = -1 - \frac{\partial P}{\partial z}$$
$$1 + \epsilon \Gamma = -\frac{\partial P}{\partial z}$$

 $\Gamma = \frac{\partial w}{\partial t} + \epsilon u \frac{\partial w}{\partial x} + \frac{\epsilon}{\mu} w \frac{\partial w}{\partial z} \text{ est l'accélération verticale des particules fluides}$

$$P = \epsilon \zeta - z + \epsilon \int_{z}^{\epsilon \zeta} \Gamma \ d\xi$$

×

$$\int_{-1}^{\epsilon\zeta} P \, dz = \frac{1}{2}h^2 + \epsilon \int_{-1}^{\epsilon\zeta} \, dz \int_{z}^{\epsilon\zeta} \Gamma \, d\xi$$

$$\int_{-1}^{\epsilon\zeta} P \ dz = \frac{1}{2}h^2 + \epsilon \int_{-1}^{\epsilon\zeta} \Gamma(z+1) \ dz \ .$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hU}{\partial x} = 0$$
$$\frac{\partial U}{\partial t} + \epsilon U \frac{\partial U}{\partial x} + \frac{\partial \zeta}{\partial x} + \frac{\epsilon}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon \zeta} (u^2 - U^2) \, dz \right) = -\frac{1}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon \zeta} (z+1) \Gamma \, dz \right)$$

méthode de perturbation de Φ en série des puissances de μ :

$$\begin{split} \Phi &= \sum_{j=0}^{N} \mu^{j} \Phi_{j} \ . \\ & \mu \frac{\partial^{2} \Phi}{\partial x^{2}} + \frac{\partial^{2} \Phi}{\partial z^{2}} = 0 \\ & \frac{\partial^{2} \Phi_{0}}{\partial z^{2}} + \mu \left(\frac{\partial^{2} \Phi_{0}}{\partial x^{2}} + \frac{\partial^{2} \Phi_{1}}{\partial z^{2}} \right) + ... = 0 \ . \end{split}$$

• On en déduit que $\frac{\partial^2 \Phi_0}{\partial z^2} = 0$ et donc $\frac{\partial \Phi_0}{\partial z} = c1(x, t)$. D'après la condition au limite au fond on obtient $\frac{\partial \Phi_0}{\partial z} = 0$ et donc :

$$\Phi_0 = \Phi(z = \epsilon \zeta) = \psi(x, t) .$$

• A un ordre supérieur en μ on trouve :

$$\Phi_1 = -\frac{1}{2}((z+1)^2 - h^2)\frac{\partial^2\psi}{\partial x^2}$$

$$\Phi_{0} = \psi(x, t) \qquad \Phi_{1} = -\frac{1}{2}((z+1)^{2} - h^{2})\frac{\partial^{2}\psi}{\partial x^{2}}$$
$$u = \frac{\partial\Phi}{\partial x} = \frac{\partial\psi}{\partial x} + \mu\epsilon h\frac{\partial\zeta}{\partial x}\frac{\partial^{2}\psi}{\partial x^{2}} - \frac{\mu}{2}((z+1)^{2} - h^{2})\frac{\partial^{3}\psi}{\partial x^{3}} + O(\mu^{2})$$
$$U = \frac{\partial\psi}{\partial x} + \mu\epsilon h\frac{\partial\zeta}{\partial x}\frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\mu}{3}h^{2}\frac{\partial^{3}\psi}{\partial x^{3}} + O(\mu^{2})$$

- 0

$$u = U - \frac{\mu}{2}(z+1)^2 \frac{\partial^2 U}{\partial x^2} + \frac{\mu}{6}h^2 \frac{\partial^2 U}{\partial x^2} + O(\mu^2)$$
$$w = \frac{\partial \Phi}{\partial z} = -\mu(z+1)\frac{\partial U}{\partial x} + O(\mu^2)$$

Modélisation des ondes longues

Equations de Serre / Green Naghdi

$$u = U - \frac{\mu}{2}(z+1)^2 \frac{\partial^2 U}{\partial x^2} + \frac{\mu}{6}h^2 \frac{\partial^2 U}{\partial x^2} + O(\mu^2)$$
$$w = \frac{\partial \Phi}{\partial z} = -\mu(z+1)\frac{\partial U}{\partial x} + O(\mu^2)$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hU}{\partial x} = 0$$

$$\frac{\partial U}{\partial t} + \epsilon U \frac{\partial U}{\partial x} + \frac{\partial \zeta}{\partial x} + \frac{\epsilon}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon \zeta} (u^2 - U^2) \, dz \right) = -\frac{1}{h} \frac{\partial}{\partial x} \left(\int_{-1}^{\epsilon \zeta} (z+1) \Gamma \, dz \right)$$

$$\int_{-1}^{\epsilon_{\zeta}} (u^2 - U^2) \, dz = O(\mu^2)$$
$$\Gamma = -\mu(z+1) \left(\frac{\partial^2 U}{\partial x \partial t} + \epsilon U \frac{\partial^2 U}{\partial x^2} - \epsilon \left(\frac{\partial U}{\partial x} \right)^2 \right)$$

art

$$\frac{\partial \zeta}{\partial t} + \frac{\partial hU}{\partial x} = 0$$

$$\frac{\partial U}{\partial t} + \epsilon U \frac{\partial U}{\partial x} + \frac{\partial \zeta}{\partial x} = \frac{\mu}{3h} \frac{\partial}{\partial x} \left(h^3 \left(\frac{\partial^2 U}{\partial x \partial t} + \epsilon U \frac{\partial^2 U}{\partial x^2} - \epsilon \left(\frac{\partial U}{\partial x} \right)^2 \right) \right)$$

- O(μ) : équations de Saint Venant (entièrement nonlinéaires et non dispersives)
- $O(\mu^2)$ et $\epsilon = O(\mu)$: équations de Boussinesq (faiblement non linéaires et dispersives)
- O(μ²) et ε = O(1) : équations de Serre / Green Naghdi (entièrement non linéaires et faiblement dispersives)

Relation de dispersion

$$\frac{\partial \zeta}{\partial t} + \frac{\partial U}{\partial x} = 0$$
$$\frac{\partial U}{\partial t} + \frac{\partial \zeta}{\partial x} = \frac{\mu}{3} \frac{\partial^3 U}{\partial^2 x \partial t}$$

$$c_{\phi} = \left(1 + rac{\mu k^2}{3}
ight)^{-1/2} \simeq 1 - rac{\mu k^2}{6} \; .$$

Onde solitaire

$$h(x,t) = d_0 + A_0 \operatorname{sech}^2 (K(x - Ct))$$

$$\begin{array}{rcl} \mathcal{K} & = & \displaystyle \frac{1}{d_0} \left(\frac{3\epsilon_0}{4(1+\epsilon_0)} \right)^{1/2} \\ \mathcal{C} & = & (gd_0)^{1/2} (1+\epsilon_0)^{1/2} \\ \mathcal{U} & = & \displaystyle \mathcal{C}(1-\frac{d_0}{h}) \end{array}$$

where the linear operator $\mathcal{T}[h, b]$ is defined as

$$\mathcal{T}[h,b]W = -\frac{1}{3h}\nabla(h^3\nabla\cdot W) + \frac{1}{2h}[\nabla(h^2\nabla b\cdot W) - h^2\nabla b\nabla\cdot W] + \nabla b\nabla b\cdot W$$

and the quadratic term $\mathcal{Q}[h,b](\mathbf{u})$ is given by

$$\begin{split} \mathcal{Q}[h,b](\mathbf{u}) &= -\frac{1}{3h} \nabla \left(h^3 ((\mathbf{u} \cdot \nabla) (\nabla \cdot \mathbf{u}) - (\nabla \cdot \mathbf{u})^2) \right) \\ &+ \frac{1}{2h} [\nabla (h^2 (\mathbf{u} \cdot \nabla)^2 b) - h^2 ((\mathbf{u} \cdot \nabla) (\nabla \cdot \mathbf{u}) - (\nabla \cdot \mathbf{u})^2) \nabla b] + ((\mathbf{u} \cdot \nabla)^2 b) \nabla b \end{split}$$

Reformulation of SGN equations

$$\partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \nabla (\frac{1}{2}gh^2) = -gh\nabla b$$

$$+ \frac{1}{\alpha}gh\nabla \zeta - (I + \alpha h\mathcal{T}\frac{1}{h})^{-1}[\frac{1}{\alpha}gh\nabla \zeta + h\mathcal{Q}_1(\mathbf{u})]$$

 $Q_1(\mathbf{u}) = Q(\mathbf{u}) - \mathcal{T}((\mathbf{u} \cdot \nabla)\mathbf{u})$ only involves second order derivatives of \mathbf{u}

α --> improved dispersive properties (Madsen et al., 1991) $\mathsf{kd}_0 \leq \mathsf{3}$

Bonneton, Chazel, Lannes, Marche and Tissier (2011)

$$\partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \nabla (\frac{1}{2}gh^2) = -gh\nabla b$$

$$+ \frac{1}{\alpha}gh\nabla \zeta - (I + \alpha h\mathcal{T}\frac{1}{h})^{-1}[\frac{1}{\alpha}gh\nabla \zeta + h\mathcal{Q}_1(\mathbf{u})]$$

Lannes and Marche (2014) have proposed a new formulation where

the operator to invert is time independent

 \rightarrow a considerable decrease of the computational time!

$$\partial_t h + \nabla \cdot (h\mathbf{u}) = 0$$

$$\partial_t (h\mathbf{u}) + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \nabla (\frac{1}{2}gh^2) = -gh\nabla b$$

$$+ \frac{1}{\alpha}gh\nabla \zeta - (I + \alpha h\mathcal{T}\frac{1}{h})^{-1}[\frac{1}{\alpha}gh\nabla \zeta + h\mathcal{Q}_1(\mathbf{u})]$$

□ Numerical strategy: decoupling between the hyperbolic and the elliptic parts

e.g. Duran and Marche (2016), Filippini et al. (2017)

 Strategy for wave breaking: description of broken-wave fronts as shocks by the NSWE, by skipping the dispersive step S2
 Bonneton et al. (2011)

Shoaling and breaking of regular waves over a sloping beach

Tissier et al. (2012)
Shoaling and breaking of regular waves over a sloping beach

Long wave modelling

Shoaling and breaking of regular waves over a sloping beach

Validation with Cox (1995) experiments

Long wave modelling

Comparison with field data

Truc Vert Beach 2001

- Offshore wave conditions: $\theta \approx 0^{\circ}$, Hs=3 m, Ts=12 s
- Maximum surf zone width: 500 m

Applications

Periodic waves breaking over a bar

Validation with Beji and Battjes (1993) experiments

Tissier et al. (2012)

Periodic waves breaking over a bar

Validation with Beji and Battjes (1993) experiments

Tissier et al. (2012)

Long wave modelling

Applications

Validation with Beji and Battjes (1993) experiments

Laboratory data Model prediction

Long wave modelling

Applications

Wave overtopping and multiple shorelines

Solitary waves overtopping a seawall (Hsiao and Lin, 2010)

Applications

Wave overtopping and multiple shorelines

Wave overtopping and multiple shorelines

BARDEX II (HYDRALAB project, Delta Flumes, PI: Gerd Masselink) Barrier Dynamics Experiment : shallow water sediment transport processes in the inner surf, swash and overwash zone.

Wave overtopping and multiple shorelines

BARDEX II (HYDRALAB project, Delta Flumes, PI: Gerd Masselink) Barrier Dynamics Experiment : shallow water sediment transport processes in the inner surf, swash and overwash zone.

Long wave modelling

Applications

Marche et Lannes, 2014

Undular bore (dispersive choc)

Data from Soares-Frazao et Zech (2002), Fr = 1.104

3. Distorsion des ondes longues et formation de chocs

What are the conditions for tsunami-like bore formation in coastal and estuarine environments?

tsunami bore

tidal bore

the continental shelf is relatively flat

$$\epsilon_0 = \frac{A_0}{D_0} \qquad \mu_0 = \frac{D_0^2}{L_{w0}^2}$$

 $μ_0 << 1 ε_0 = O(1)$

$$\begin{aligned} \frac{\partial \zeta}{\partial t} &+ \vec{\nabla} . ((1 + \epsilon_0 \zeta) \vec{u}) = 0\\ \frac{\partial \vec{u}}{\partial t} &+ \epsilon_0 (\vec{u} . \vec{\nabla}) \vec{u} + \vec{\nabla} \zeta = \mu_0 D \end{aligned}$$

 $\mu_0 << 1 \quad \epsilon_0 = O(1)$

$$\frac{\partial \zeta}{\partial t} + \vec{\nabla} \cdot ((1 + \epsilon_0 \zeta) \vec{u}) = 0$$

$$\frac{\partial \vec{u}}{\partial t} + \epsilon_0 (\vec{u} \cdot \vec{\nabla}) \vec{u} + \vec{\nabla} \zeta = \mu_0 D$$

Serre Green Naghdi model

Tissier, Bonneton et al., JCR2011

 $\mu_0 << 1 \quad \epsilon_0 = O(1)$

$$\frac{\partial \zeta}{\partial t} + \vec{\nabla} \cdot ((1 + \epsilon_0 \zeta) \vec{u}) = 0$$
$$\frac{\partial \vec{u}}{\partial t} + \epsilon_0 (\vec{u} \cdot \vec{\nabla}) \vec{u} + \vec{\nabla} \zeta = \mu_0 \vec{D}$$

Serre Green Naghdi model

Tissier, Bonneton et al., JCR2011

$$\frac{\partial}{\partial t}(u-2c) + (u-c)\frac{\partial}{\partial x}(u-2c) = 0$$
$$\frac{\partial}{\partial t}(u+2c) + (u+c)\frac{\partial}{\partial x}(u+2c) = 0$$

$$c = (gh)^{1/2}$$
 $c_0 = (gD_0)^{1/2}$

One way $\Rightarrow u - 2c = -2c_0$

$$\frac{\partial h}{\partial t} + C_h(h)\frac{\partial h}{\partial x} = 0 \qquad \qquad C_h = 3c - 2c_0$$

$$\begin{bmatrix}
h(x,t) = h(x_0,t=0) & \text{along} \\
\frac{dx}{dt} = C_h & \text{or} & x = x_0 + C_h(x_0,t=0)t
\end{bmatrix}$$

$$h(x,t) = h_0(x - C_h(x_0)t)$$

$$h(x,t) = h_0(x - C_h(x_0)t)$$

$$\frac{\partial h}{\partial x} = \frac{\frac{\partial h_0}{\partial x_0}}{1 + \frac{\partial C_h}{\partial x_0}t} = \frac{\frac{\partial h_0}{\partial x_0}}{1 + \frac{3c_0}{2\sqrt{D_0h_0}}\frac{\partial h_0}{\partial x_0}t}$$
$$t_s = -\frac{2}{3}\frac{D_0}{c_0\frac{\partial h_0}{\partial x_0})_s} \implies x_s = -\frac{2}{3}\frac{D_0C_{h_s}}{c_0\frac{\partial h_0}{\partial x_0})_s}$$

$$x_s \simeq -\frac{2}{3} \frac{D_0}{\frac{\partial h_0}{\partial x_0}_s}$$

$$h(x_0, t = 0) = D_0 + A_0(1 + \sin \frac{x_0}{L_{w0}})$$

$$x_s = \frac{2}{3} \frac{L_{w0}}{\epsilon_0}$$

see Madsen et al 2008

$$(x_0, t = 0) = D_0 + A_0 (1 + \sin \frac{x_0}{L_{w0}})$$

 $x_s = \frac{2}{3} \frac{L_{w0}}{\epsilon_0} < L_c$

$$h(x_0, t = 0) = D_0 + A_0 (1 + \sin \frac{x_0}{L_{w0}})$$
$$x_s = \frac{2}{3} \frac{L_{w0}}{\epsilon_0} < L_c$$
$$\delta_0 = \frac{L_{w0}}{L_c} < \frac{3}{2} \epsilon_0$$

Continental shelves $D_0 \approx 150 \text{ m}$

- tsunamis: $A_0 \approx 2 \text{ m}$, $T_0 \approx 25 \text{ min} \implies X_s = 460 \text{ km}$
- tides: $T_0 \approx 744 \text{ min} \implies X_s >> L_c \rightarrow \text{ no tidal bore}$

 <u>tsunamis</u>: bores may occur in large and shallow (few tens of m) coastal environments: marine coastal plains (e.g.: deltas, alluvial estuaries) or carbonate platforms (e.g.: coral reef systems)

- <u>tsunamis</u>: bores may occur in large and shallow (few tens of m) coastal environments: marine coastal plains (e.g.: deltas, alluvial estuaries) or carbonate platforms (e.g.: coral reef systems)
- <u>tides</u>: bores can occur in long shallow alluvial estuaries $L \approx 100 \text{ km}$ $D_0 \approx 10 \text{ m}$

- <u>tsunamis</u>: bores may occur in large and shallow (few tens of m) coastal environments: marine coastal plains (e.g.: deltas, alluvial estuaries) or carbonate platforms (e.g.: coral reef systems)
- <u>tides:</u> bores can occur in **long shallow alluvial estuaries**

in such shallow environments friction can play a significant role

4. Dynamique des ressauts de marée et mascarets

Worldwide tidal bores

Severn River - England

Amazon River – Brazil (Pororoca)

Qiantang River – China

Kampar River – Sumatra (Bono)

Worldwide tidal bores

Bonneton et al. JGR 2015

Worldwide tidal bores

Gironde/Garonne/Dordogne estuary – France

3 field campaigns : a unique long-term high-frequency database

Gironde/Garonne/Dordogne estuary – France

3 field campaigns : a unique long-term high-frequency database

Bonneton et al. JGR 2015

□ Large tidal range $(Tr_0=2A_0) \rightarrow Chanson (2012)$: $Tr_0 \rightarrow 4.5-6 m$

□ Small water depth

□ Large-scale funnel-shaped estuaries

 \Rightarrow Scaling analysis

coastal plain alluvial estuaries

□ Large tidal range

□ Small water depth

□ Large-scale funnel-shaped estuaries

\Rightarrow Scaling analysis

Identify the characteristic scales of the problem:

- morphology of alluvial estuaries
- tidal waves

coastal plain alluvial estuaries

Tide-dominated alluvial estuaries show many morphological similarities all over the world

Savenije 2012

Pungue estuary

Alluvial estuary morphology

<u>Graas et al. 2008</u>
Alluvial estuary morphology

$$B = B_0 e^{-x/L_{B0}}$$

Scaling analysis

D₀

- T₀=12.4 h
- $A_0 = Tr_0/2$ y**,** $B=B_0 \exp(-x/L_{b0})$ estuary ocean В mouth X 0 L_{b0} Z, $\zeta(x=0,t)=A_0\sin(2\pi t/T_0)$ $Tr_0 = 2A_0$ X ocean 0 estuary D_0 mouth

- Cf₀: friction coefficient
- Q₀ : freshwater discharge

Scaling analysis

X

٦

$$\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + D \frac{\partial u}{\partial x} + \frac{u}{B} \frac{\partial A}{\partial x} \Big|_{z=\zeta} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial \zeta}{\partial x} + C_{f0} \frac{|u|u}{D} = 0$$

$$B = B_0 \exp(-\frac{x}{L_{b0}}) \qquad \qquad \frac{1}{B} \frac{\partial \mathcal{A}}{\partial x}|_{z=\zeta} = -\frac{D}{L_{b0}}$$

$$t' = \frac{t}{T_0/2\pi}, \quad D' = \frac{D}{D_0}, \quad \zeta' = \frac{\zeta}{A_0}, \quad x' = \frac{x}{L_0}, \quad u' = \frac{u}{U_0}.$$

$$\frac{\partial \zeta}{\partial t} + \frac{K}{\mathcal{L}} \left(\epsilon_0 u \frac{\partial \zeta}{\partial x} + D \frac{\partial u}{\partial x} \right) - K u D = 0$$
$$\frac{\partial u}{\partial t} + \frac{K}{\mathcal{L}} \epsilon_0 u \frac{\partial u}{\partial x} + \frac{1}{K \mathcal{L}} \delta_0^2 \frac{\partial \zeta}{\partial x} + \underbrace{K \frac{\epsilon_0 \phi_0}{\delta_0}}_{\mathcal{D}_i} \frac{|u|u}{D} = 0.$$

$$\epsilon_0 = \frac{A_0}{D_0}$$
 $\delta_0 = \frac{L_{w0}}{L_{b0}}$ $\phi_0 = \frac{C_{f0}L_{w0}}{D_0}$

$$L_{w0} = (gD_0)^{1/2}\omega_0^{-1}$$

$$K = \frac{U_0}{L_{b0}A_0D_0^{-1}\omega_0} \qquad \qquad \mathcal{L} = \frac{L_0}{L_{b0}}$$

Scaling analysis

$$\frac{\partial \zeta}{\partial t} + \frac{K}{\mathcal{L}} \left(\epsilon_0 u \frac{\partial \zeta}{\partial x} + D \frac{\partial u}{\partial x} \right) - K u D = 0$$
$$\frac{\partial u}{\partial t} + \frac{K}{\mathcal{L}} \epsilon_0 u \frac{\partial u}{\partial x} + \frac{1}{K \mathcal{L}} \delta_0^2 \frac{\partial \zeta}{\partial x} + \underbrace{K \frac{\epsilon_0 \phi_0}{\delta_0}}_{\mathcal{D}_i} \frac{|u|u}{D} = 0$$

 $K \approx 1$, for tidal bore estuaries

 \rightarrow necessary condition for tidal bore formation by not a sufficient one

$$\frac{\partial \zeta}{\partial t} + \frac{K}{\mathcal{L}} \left(\epsilon_0 u \frac{\partial \zeta}{\partial x} + D \frac{\partial u}{\partial x} \right) - K u D = 0$$
$$\frac{\partial u}{\partial t} + \frac{K}{\mathcal{L}} \epsilon_0 u \frac{\partial u}{\partial x} + \frac{1}{K\mathcal{L}} \delta_0^2 \frac{\partial \zeta}{\partial x} + \underbrace{K \frac{\epsilon_0 \phi_0}{\delta_0}}_{\mathcal{D}_i} \frac{|u|u}{D} = 0$$

\rightarrow explore the 3D dimensionless external parameter space: (ϵ_0 , δ_0 , ϕ_0)

• <u>Field data</u>: 21 convergent alluvial estuaries

Bonneton, P., Filippini, A.G., Arpaia, L., Bonneton, N. and Ricchiuto, M 2016. Conditions for tidal bore formation in convergent alluvial estuaries. ECSS, **172**, 121-127

<u>Numerical simulations</u>: 225 runs of a shallow water model
Filippini, A.G., Arpaia, L., Bonneton, P., and Ricchiuto, M. 2017.

Modelling analysis of tidal bore formation in convergent estuaries. in revision

1	Chao Phya	Thailand
2	Columbia	USA
3	Conwy	UK
4	Corantijn	USA
5	Daly	Australia
6	Delaware	USA
7	Elbe	Germany
8	Gironde	France
9	Hooghly	India
10	Humber	UK
11	Limpopo	Mozambique
12	Loire	France
13	Mae Klong	Thailand
14	Maputo	Mozambique
15	Ord	Australia
16	Pungue	Mozambique
17	Qiantang	China
18	Scheldt	Netherlands
19	Severn	UK
20	Tha Chin	Thailand
21	Thames	UK

- 21 convergent alluvial estuaries
- 9 tidal bore estuaries

$$D_0, L_{b0}, A_0 = Tr_0/2, Cf_0$$

Field data

1	Chao Phya	Thailand
	Columbia	
2	Columbia	USA
3	Conwy	UK
4	Corantijn	USA
5	Daly	Australia
6	Delaware	USA
7	Elbe	Germany
8	Gironde	France
9	Hooghly	India
10	Humber	UK
11	Limpopo	Mozambique
12	Loire	France
13	Mae Klong	Thailand
14	Maputo	Mozambique
15	Ord	Australia
16	Pungue	Mozambique
17	Qiantang	China
18	Scheldt	Netherlands
19	Severn	UK
20	Tha Chin	Thailand
21	Thames	UK

Tidal bore estuaries: $\delta_0 \approx 2.4 \rightarrow 2D$ parameter space (ϵ_0 , ϕ_0)

Field data

1	Chao Phya	Thailand
2	Columbia	USA
3	Conwy	UK
4	Corantijn	USA
5	Daly	Australia
6	Delaware	USA
7	Elbe	Germany
8	Gironde	France
9	Hooghly	India
10	Humber	UK
11	Limpopo	Mozambique
12	Loire	France
13	Mae Klong	Thailand
14	Maputo	Mozambique
15	Ord	Australia
16	Pungue	Mozambique
17	Qiantang	China
18	Scheldt	Netherlands
19	Severn	UK
20	Tha Chin	Thailand
21	Thames	UK

Tidal bores occur when $\varepsilon_0 > \varepsilon_c(\phi_0)$

Numerical investigation of the 2D parameter space (ε_0, ϕ_0)

 \rightarrow **225 runs** with $\delta_0 = 2$

Filippini, A.G., Arpaia, L., Bonneton, P., and Ricchiuto, M. 2017

SGN / SV

Numerical simulations

SGN / SV

Numerical investigation of the 2D parameter space (ε_0, ϕ_0)

2D nonlinear shallow water model developed by *Ricchiuto, JCP 2015*

- shock capturing residual distribution scheme
- 2nd order in space and time
- unstructured grids suitable for real estuarine applications

one example on the 225 runs

$$S_{max} = max \left(\frac{\partial \zeta}{\partial x}\right)$$

Figure 2: Isocurves of the quantity S_{max} in the plane of the parameters (ϕ_0, ϵ_0) , the white dashed line represents the $\epsilon_c(\phi_0)$ curve, namely the limit for tidal bore appearance following the criterion $S_{max} \geq 10^{-3}$.

rate of change of the tidal range

Theoretical zero-amplification curve: $\varepsilon_0 \phi_0 = \delta_0 (\delta_0^2 + 1)$ (Savenije et al. 2008)

$$\frac{\partial u}{\partial t} + \frac{1}{\mathcal{L}} \epsilon_0 u \frac{\partial u}{\partial x} + \frac{1}{\mathcal{L}} \delta_0^2 \frac{\partial \zeta}{\partial x} + \underbrace{\frac{\epsilon_0 \phi_0}{\delta_0}}_{\mathcal{D}_i} \frac{|u|u}{D} = 0$$

Estuary classification

Tidal bores occur when $\varepsilon_0 > \varepsilon_c(\phi_0)$

Ondes longues et chocs dispersifs

ressaut de marée (mascaret)

Conclusion

Large scale phenomenon \rightarrow tidal wave

- $L_{TW} \approx 100 \text{ km}$
- $T_{TW} \approx 12.4 h$

Small scale wave phenomenon → tidal bore

Conclusion

Thank you for your attention

