Analysis of non-hydrostatic processes

in tidal-bore estuaries

Bonneton P., Sottolichio A., Bonneton N. and Lannes D. EPOC and IMB - Bordeaux Univ., CNRS

Introduction

Worldwide tidal bores

Severn River - England

Qiantang River – China

Dordogne River - France

few quantitative observations: Simpson et al. 2004, Wolanski et al. 2004, Uncles et al. 2006, Bonneton et al. 2011, Chanson et al., 2011

Introduction

Tidal bore formation

Bonneton et al. JGR 2015

What are the general conditions which control tidal bore

formation in convergent alluvial estuaries?

Following previous scaling analyses of tidal wave transformation in estuaries by:

Lanzoni and Seminara (1998), Toffolon et al. (2006) and Savenije et al. (2008)

What are the general conditions which control tidal bore

formation in convergent alluvial estuaries?

$$\epsilon_0 = \frac{A_0}{D_0} \qquad \qquad \Phi_0 = \frac{C_{f0}L_{w0}}{D_0}$$

$$L_{w0} = (gD_0)^{1/2} T_0 / 2\pi$$

Bonneton et al. ECCS 2016

Estuary classification

Tidal bore occurrence in the parameter plane $(\epsilon_0 \;, \Phi_0)$

Bonneton et al. ECCS 2016

Introduction

- \circ a lack of quantitative measurements
- o difficulties in measuring this high-frequency process

- \rightarrow how to measure and characterize TB
- \rightarrow analysis of tidal bore dynamics
- → consequences in terms of sediment transport

Tidal bore measurements

Tidal bore measurements

Field campaigns

Long-term high-frequency field campaigns around the spring and autumn equinox

Long-term high-frequency field campaigns around the spring and autumn equinox

 \Rightarrow large range of tidal ranges and freshwater discharges

High-frequency (8 Hz) direct acoustic surface tracking measurements

Nortek ADCP, Signature 1000 \rightarrow expensive in terms of memory

 \rightarrow bottom pressure sensors

Garonne River, 31/08/15, Tr=6.6 m, Fr=1.28

High-frequency (8 Hz) pressure measurements

Surface elevation

High-frequency (8 Hz) pressure measurements

- \rightarrow hydrostatic reconstruction
- \rightarrow linear non-hydrostatic reconstruction,

$$\zeta_{\rm NH} = \mathcal{F}^{-1} \left(\frac{\cosh(k\bar{h})}{\cosh(kz_{\rm P})} \mathcal{F}(\zeta_{\rm H}) \right)$$

 \rightarrow <u>nonlinear</u> non-hydrostatic reconstruction, *Bonneton and Lannes, submitted*.

- mean jump
- secondary wave field

 $C_{\underline{b}}$

 F_r

 \mathcal{U}_1

 $^{\prime}gD$

Local nonlinearity parameter

$$\mathcal{E} = \frac{T_R}{D_1}$$

Mean jump

Mean jump

Secondary wave field

Secondary wave field

Seine estuary

100 km from the estuary mouth

Bonneton et al., CR Geosci. 2012

Garonne River

Garonne, Fr=1.08, Tr=5.05 m, Q₀=681 m³/s, depth averaged velocity

Garonne River

Conclusion

Conclusion

- \Box Tidal bore dynamics \rightarrow a complex non-hydrostatic process
- Low-steepness tidal bore regime (Fr<1.1)</p>
 - \rightarrow significant in terms of flow and sediment dynamics
 - \rightarrow not visually observable
 - \rightarrow makes it difficult to identify (e.g. Seine estuary)
- A need to reassess <u>tidal bore occurrence</u> and dynamics in meso and macro-tidal estuaries <u>worldwide</u>

1	Chao Phya	Thailand
2	Columbia	USA
3	Conwy	UK
4	Corantijn	USA
5	Daly	Australia
6	Delaware	USA
7	Elbe	Germany
8	Gironde	France
9	Hooghly	India
10	Humber	UK
11	Limpopo	Mozambique
12	Loire	France
13	Mae Klong	Thailand
14	Maputo	Mozambique
15	Ord	Australia
16	Pungue	Mozambique
17	Qiantang	China
18	Scheldt	Netherlands
19	Severn	UK
20	Tha Chin	Thailand
21	Thames	UK

Conditions for tidal bore formation

Field data

Tidal bore estuaries: $\delta_0 \approx 2.4 \rightarrow 2D$ parameter space (ϵ_0 , ϕ_0)