Institut Pierre Simon Laplace Decadal fingerprints of freshwater discharge cons around Greenland in a multi-model ensemble

Didier Swingedouw¹, C. B. Rodehacke², E. Behrens³, M. Menary⁴, S. M. Olsen⁵, Y. Gao⁶, U. Mikolajewicz², J. Mignot⁷, A. Biastoch³

¹LSCE/IPSL, Gif-sur-Yvette, France ²Max-Planck-Institut für Meteorologie, Hamburg, Germany ³GEOMAR / Helmhotz Centre for Ocean Research, Kiel, Germany

⁴Met Office Hadley Centre, Exeter, UK ⁵DMI, Copenhagen, Denmark ⁶NERSC, Bergen, Norway ⁷LOCEAN/IPSL, Paris, France

Mailto: didier.swingedouw@lsce.ipsl..fr; Web site :http://dods.ipsl.jussieu.fr/dssce/public_html/

Background

Greenland ice sheet (GrIS) meting is accelerating in the recent years (Rignot et al. 2011)

Large uncertainties concerning the impact of GrIS melting on the Atlantic Meridional Overturning Circulation (AMOC) in climate models (Stouffer et al. 2006)

> Complex imprints of additional freshwater flux in the North Atlantic (not simple cooling)

Model	Institute	Туре	Ocean	Atmosphere
HadCM3	Hadley Centre	OAGCM	No name	HadAM3,
			1.25x1.25, L20	91x76 - L19
IPSLCM5A	Institut Pierre Simor Laplace	OAGCM	NEMO	LMD5,
			2°, L31	96x96 - L39
MPI-ESM	MPI	ESM	MPI-OM	ECHAM6,
			1.5°, L40	T63 - L47
ORCA05	GEOMAR	OGCM	NEMO	CORE.v2
			0.5°, L46	forcing
EC-Earth	DMI	OAGCM	NEMO	IFS
			1°, L42	T159 - L31
BCM2	NERSC	OAGCM	MICOM	ARPEGE
			2.8°, L35 isopycnal	T63 - L31

models

gyres

0.00

-0.02

a) AMOC vs FW leakage

subpolar to subtropical gyre

Experimental design

Aim of this work

- Evaluate the robust fingerprints of additional freshwater input in the North Atlantic in a multi-model framework as well as its impact on the AMOC
- > Understand the mechanisms leading to such fingerprints (oceanic or atmospheric)

Explain the spread for the AMOC sensitivity in climate models in response to hosing

SST and SSS fingerprints

- Table 1: Description of the participating models
- We consider transient *historical* simulations over the period 1965-2004 from 5 AOGCMs and 1 ocean-only model
- With the same set-up we consider *hosing* experiments with 0.1 Sv added around the Greenland grid-boxes in each model

We consider the anomalies (significant at 95% level) of the 4th decade between historical and hosing experiments

MPI-ESM

♦ IPSLCM5♦ HadCM3

BCM2

Fig.2: gridboxes concerned by the hosing.

20W

0W

40W

> This appears to be related with asymmetry between the subpolar and subtropical gyre: the more asymmetric, the lower the FW leakage is

Outlooks

> Is this large spread for the AMOC response also consistent in RCP85 projections? i.e. Can the AMOC weakening be significanly weakened by GrIS melting?

>Preliminary results seem to indicate it is not the case because the deep ocean is already isolated from the surface i.e. oceanic convection has already almost ceased after 2050.

Reference: Swingedouw D., Rodehacke C., Behrens E., Menary M., Olsen S., Gao Y., Mikolajewicz U., Mignot J., Biastoch A. Decadal fingerprints of fresh water discharge around Greenland in a multi-models ensemble. *Climate Dynamics*, in press