
 

 

Background 
v   Antarctica and the Southern Ocean (SO) 

are cornerstones for global climate 
variability  

v No clear global warming trends are 
detected  in the Southern Ocean over the 
instrumental era (cf. Fig. 1) 

v General oceanic cooling trend over the 
Holocene in the SO (Denis et al 2010, 
Hodell et al. 2001), although the exact 
trends over the last 6 kyrs are still not well 
understood  

v  Possible teleconnections between large 
changes in Tropical Pacific and SO (Pike 
et al. 2013) 

Ø Put recent changes in a longer time frame context i.e. the Holocene 

Ø   Add new oceanic data for SO covering the whole Holocene 

Ø   Understand the trend by use of AOGCM simulations to isolate associated mechanisms  

Aim of this work 

Model-data comparison 

Experimental design 

     Observational materials 

•  New δ18Odiatom record, the first in the Indian sector 
of the SO (East Antarctic margin).  

•  δ18Odiatom are regulated by glacial discharges 
(iceberg and brash ice discharge) and/or frontal 
melting of glaciers (Pike et al., 2013; Crespin et al., 
2014): more freshwater inputs to the ocean leading 
to lower δ18Odiatom values. 

•  We also consider two existing δ18Odiatom records 
allowing a coverage around Antarctica (Fig. 2) 

•  Ice cores: we produce an EOF analysis (200 years 
resampling over the last 9 kyrs) from 10 Antarctic 
δ18O ice cores (Dome F, EDC, WAIS, Byrd, Siple, 
James Ross, EDML, Vostok, Taldice, Law Dome). 

      Model simulations 

 We use the IPSL-CM5A-LR coupled model: 

•   Ocean ORCA2: 2°x(0.5-2°) 

•  Sea-ice LIM2: dynamic-thermodynamic 

•  Atmosphere LMDz: (1.875°x3.75°)  

•  Land model ORCHIDEE 

We consider a 3-member ensemble of accelerated 
simulations including the changes in insolation over the 
last 6 kyrs. The insolation in these 600-yr simulations is 
accelerated by a factor of 10. We do not consider any 
changes in greenhouse gas concentrations. 

Fig.2: Location of analysed oceanic cores and ice 
cores used for the EOF as well as analysed diatoms. 

Table1: list of the simulations using IPSLCM5A-LR model 
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•  Annual mean forcing trend is very weak but slighly 
negative over Antarctica in the simulation (Fig. 6). 

•  On the opposite, the temperature trend is positive in 
summer and winter indicating the key role played by 
spring for the annual trend (Fig. 6). 

•  Ice cores from Antarctica also indicate a cooling trend 
for annual mean temperature (Fig. 7). 

•  We notice an asymmetrical response to insolation 
over south of 60°S (Fig. 8). 

•  This is due to insulation effect from sea ice. 

•  While heat can be stored on the ocean in summer due 
to low sea-ice cover, the ocean is insulated from the 
atmosphere in winter due to ice cover, limiting the 
impact of negative trend in spring insolation. 

ENSO influence? 

•  Records from Galapagos indicate larger ENSO 
since 4 cal. kyr BP (Conroy et al. 2008). 

•  Diatom abundance from Adelie Land also show an 
abrupt shift at 4 cal. kyr BP (Denis et al. 2009). 

•  δ18Odiatom records  from Prydz Bay and Palmer Deep 
do show a larger trend from 4 kyr BP as well (Fig. 8). 

•  Has a change in ENSO property affected Antartica? 

•  Recent teleconnections may indicate different link 
between ENSO and the 3 sites (Fig. 10). 

•  Model simulations slightly support such changes 
(Fig. 11). 
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v  New δ18Odiatom record from Prydz bay show a positive warming trend over the Holocene. 

v  Strong seasonality differences between spring (diatom assemblages) and summer (δ18Odiatom). 

v   Agreement with model simulations in terms of temperature trends for the δ18Odiatom records at 
the different core locations. 

v  Comparison with continental Antarctic ice core records: yearly mean has a cooling in model as 
well as in ice cores, but very strong difference in seasonal signal 

v  Spatial differences: Palmer Deep and Prydz Bay show similarities in trends but Adélie Land is 
different: due to change in ENSO frequencies over the Holocene (Pike et al. 2013). 

v  Coherent with recent ENSO observed teleconnections. 

v  Simulations also indicate possible weak increase in frequency. 

Outlooks 
Ø  Non accelerated simulations. Useful to look at ENSO variability. 

Ø  Inclusion of other forcings (CO2, CH4). 

Ø  Ice sheet, ice shelf, ocean interactions necessary to simulatie potential abrupt changes. 

Ø  New data from Ross Sea where correlation with ENSO variability is strong. 

Ø  Analysing single species samples to produce δ18Odiatom records at seasonal resolution (spring 
and summer signal in particular) given the strong seasonal disparity in insolation changes. 

Discussions and conclusions 

References: 

  # 

Ensemble 

Initial conditions Forcing Years of 

simulation 

Control 1 Spin-up simulation Preindustrial 1x1000 

Accelerated  
Holocene 

3 Start in 1850 every 10 years 

from a preindustrial 

simulation 

Insolation accelerated 10 

times 

3x600 

Fig.1: ? Other idea ? 

Fig.4: 2-meter temperature in the 
simulations at the three cores locations 

Fig.3: Measurements at the three cores considered.  

•  We found positive trends over the Holocene for 
glacial discharges from δ18Odiatom records at the 
three core locations (Fig. 3). 

•  This is in agreement with modelled temperature 
at the three sites considered (Fig. 4). 

•  The simulated trend in the 3-member ensemble 
mean follow this warming in Austral summer as well 
as in winter (not shown). 

•  This can be surprising given that orbital forcing is 
negative in annual mean.  

•  We do not find any significant difference in 
simulated trends at the 3 core locations 

Fig.10: Correlation map of 2-meter temperature with Nino3.4 
index using HadISST data over the 1870-2010 period 

Fig.9: Southern 
Ocean and 
Nino/Nina 
records 

Fig.7: First three PCs from in δ18O in Antarctica ice 
cores (proxy of annual mean temperature) and the 
associated EOF pattern. 

Fig.3: External forcings used in the simulations 

Fig.1: recent trends observed in Southern Ocean (Courtesy of 
WCRP Southern Ocean group lead by S. Gille and J. Jones)  

Fig.11: Evolution of SST in Nino3.4 box 
in the 3 simulations. The last panel 
show the number of events. 

Comparison with Antarctic records  

Fig.5: 

Fig.6: Map of temperature trends in simulated 3-member 
ensemble mean over the period 6-0 kyrs BP. 

Fig.8: Time series 
of the simulated 
ensemble mean of 
surface 
temperature (left) 
and sea-ice cover 
(right) south of 
60°S  
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